Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Obesity (Silver Spring) ; 18(3): 434-40, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19779479

RESUMO

Synthesis of triacylglycerol requires the glucose-derived glycerol component, and glucose uptake has been viewed as the rate-limiting step in glucose metabolism in adipocytes. Furthermore, adipose tissue contains all three isoforms of the glycolytic enzyme phosphofructokinase (PFK). We here report that mice deficient in the muscle isoform PFK-M have greatly reduced fat stores. Mice with disrupted activity of the PFK-M distal promoter were obtained from Lexicon Pharmaceuticals, developed from OmniBank OST#56064. Intra-abdominal fat was measured by magnetic resonance imaging of the methylene proton signal. Lipogenesis from labeled glucose was measured in isolated adipocytes. Lipolysis (glycerol and free fatty acid release) was measured in perifused adipocytes. Intra-abdominal fat in PFK-M-deficient female mice (5-10 months old) was 17 +/- 3% of that of wild-type littermates (n = 4; P < 0.02). Epididymal fat weight in 15 animals (7-9.5 months) was 34 +/- 4% of control littermate (P < 0.002), with 10-30% lower body weight. Basal and insulin-stimulated lipogenesis in PFK-M-deficient epididymal adipocytes was 40% of the rates in cells from heterozygous littermates (n = 3; P < 0.05). The rate of isoproterenol-stimulated lipolysis in wild-type adipocytes declined approximately 10% after 1 h and 50% after 2 h; in PFK-M-deficient cells it declined much more rapidly, 50% in 1 h and 90% in 2 h, and lipolytic oscillations appeared to be damped (n = 4). These results indicate an important role for PFK-M in adipose metabolism. This may be related to the ability of this isoform to generate glycolytic oscillations, because such oscillations may enhance the production of the triacylglycerol precursor alpha-glycerophosphate.


Assuntos
Adipócitos/metabolismo , Glicólise , Gordura Intra-Abdominal/metabolismo , Lipogênese , Lipólise , Obesidade/enzimologia , Fosfofrutoquinase-1 Muscular/metabolismo , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Feminino , Glicerofosfatos/biossíntese , Insulina/metabolismo , Isomerismo , Isoproterenol , Imageamento por Ressonância Magnética , Camundongos , Mutagênese Insercional , Obesidade/metabolismo , Tamanho do Órgão , Triglicerídeos/biossíntese
2.
Obesity (Silver Spring) ; 17(10): 1856-60, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19644453

RESUMO

Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose-stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL-treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL-treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL-exposed islets.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/fisiopatologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Glucose/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Obesidade/tratamento farmacológico , Palmitatos/metabolismo , Ratos , Ratos Zucker , Rimonabanto , Taxa Secretória/efeitos dos fármacos
3.
Endocrinology ; 150(6): 2586-95, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19213841

RESUMO

GPR39 is a G protein-coupled receptor expressed in liver, gastrointestinal tract, adipose tissue, and pancreas. We have recently shown that young GPR39(-/-) mice have normal body weight, food intake, and fasting glucose and insulin levels. In this study, we examined the role of GPR39 in aging and diet-induced obese mice. Body weight and food intake were similar in wild-type and GPR39(-/-) mice as they aged from 12 to 52 wk or when fed a low-fat/high-sucrose or high-fat/high-sucrose diet. Fifty-two-week-old GPR39(-/-) mice showed a trend toward decreased insulin levels after oral glucose challenge. When fed either a low-fat/high-sucrose or high-fat/high-sucrose diet, GPR39(-/-) mice had increased fed glucose levels and showed decreased serum insulin levels during an oral glucose tolerance test in the face of unchanged insulin tolerance. Pancreas morphology and glucose-stimulated insulin secretion in isolated islets from wild-type and GPR39(-/-) mice were comparable, suggesting that GPR39 is not required for pancreas development or ex vivo insulin secretion. Small interfering RNA-mediated knockdown of GPR39 in clonal NIT-1 beta-cells revealed that GPR39 regulates the expression of insulin receptor substrate-2 and pancreatic and duodenal homeobox-1 in a cell-autonomous manner; insulin receptor substrate-2 mRNA was also significantly decreased in the pancreas of GPR39(-/-) mice. Taken together, our data indicate that GPR39 is required for the increased insulin secretion in vivo under conditions of increased demand, i.e. on development of age-dependent and diet-induced insulin resistance. Thus, GPR39 agonists may have potential for the treatment of type 2 diabetes.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento/metabolismo , Animais , Células Cultivadas , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Inativação Gênica/fisiologia , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Interferência de RNA/fisiologia , Transativadores/metabolismo
4.
Biochemistry ; 46(50): 14461-7, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18027971

RESUMO

L-type voltage-gated Ca2+ channels (Cav1.2) mediate a major part of insulin secretion from pancreatic beta-cells. Cav1.2, like other voltage-gated Ca2+ channels, is functionally and physically coupled to synaptic proteins. The tight temporal coupling between channel activation and secretion leads to the prediction that rearrangements within the channel can be directly transmitted to the synaptic proteins, subsequently triggering release. La3+, which binds to the polyglutamate motif (EEEE) comprising the selectivity filter, is excluded from entry into the cells and has been previously shown to support depolarization-evoked catecholamine release from chromaffin and PC12 cells. Hence, voltage-dependent trigger of release relies on Ca2+ ions bound at the EEEE motif and not on cytosolic Ca2+ elevation. We show that glucose-induced insulin release in rat pancreatic islets and ATP release in INS-1E cells are supported by La3+ in nominally Ca2+-free solution. The release is inhibited by nifedipine. Fura 2 imaging of dispersed islet cells exposed to high glucose and La3+ in Ca2+-free solution detected no change in fluorescence; thus, La3+ is excluded from entry, and Ca2+ is not significantly released from intracellular stores. La3+ by interacting extracellularlly with the EEEE motif is sufficient to support glucose-induced insulin secretion. Voltage-driven conformational changes that engage the ion/EEEE interface are relayed to the exocytotic machinery prior to ion influx, allowing for a fast and tightly regulated process of release. These results confirm that the Ca2+ channel is a constituent of the exocytotic complex [Wiser et al. (1999) PNAS 96, 248-253] and the putative Ca2+-sensor protein of release.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Canais de Cálcio Tipo L/química , Linhagem Celular , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Lantânio/farmacologia , Nifedipino/farmacologia , Células PC12 , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais/efeitos dos fármacos
5.
Am J Physiol Endocrinol Metab ; 293(3): E794-801, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17595219

RESUMO

Phosphofructokinase is a key enzyme of glycolysis that exists as homo- and heterotetramers of three subunit isoforms: muscle, liver, and C type. Mice with a disrupting tag inserted near the distal promoter of the phosphofructokinase-M gene showed tissue-dependent differences in loss of that isoform: 99% in brain and 95-98% in islets, but only 50-75% in skeletal muscle and little if any loss in heart. This correlated with the continued presence of proximal transcripts specifically in muscle tissues. These data strongly support the proposed two-promoter system of the gene, with ubiquitous use of the distal promoter and additional use of the proximal promoter selectively in muscle. Interestingly, the mice were glucose intolerant and had somewhat elevated fasting and fed blood glucose levels; however, they did not have an abnormal insulin tolerance test, consistent with the less pronounced loss of phosphofructokinase-M in muscle. Isolated perifused islets showed about 50% decreased glucose-stimulated insulin secretion and reduced amplitude and regularity of secretory oscillations. Oscillations in cytoplasmic free Ca(2+) and the rise in the ATP/ADP ratio appeared normal. Secretory oscillations still occurred in the presence of diazoxide and high KCl, indicating an oscillation mechanism not requiring dynamic Ca(2+) changes. The results suggest the importance of phosphofructokinase-M for insulin secretion, although glucokinase is the overall rate-limiting glucose sensor. Whether the Ca(2+) oscillations and residual insulin oscillations in this mouse model are due to the residual 2-5% phosphofructokinase-M or to other phosphofructokinase isoforms present in islets or involve another metabolic oscillator remains to be determined.


Assuntos
Glicemia/metabolismo , Doença de Depósito de Glicogênio Tipo VII/genética , Doença de Depósito de Glicogênio Tipo VII/metabolismo , Insulina/metabolismo , Fosfofrutoquinase-1/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Secreção de Insulina , Taxa de Depuração Metabólica , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Distribuição Tecidual
6.
Diabetes ; 54(3): 629-37, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15734837

RESUMO

Free fatty acids (FFAs) and glycerol oscillate in plasma. This study examined intrinsic lipolytic oscillations within adipocytes. Rat adipocytes were perifused with Krebs-Ringer bicarbonate buffer: 1) +/- 2 mmol/l glucose; 2) +1 micromol/l isoproterenol +/- 2 mmol/l glucose; 3) + increasing oleate; and 4) + increasing percent BSA. At 2 mmol/l glucose, there were 9 +/- 1 glycerol, FFAs, and lactate pulses per hour with a pulse duration of 5 +/- 1 min. Lipolytic stimulation caused a 50-80% increase in the amplitude of lipolytic oscillations. Removal of glucose caused a 40-70% decrease in the amplitude of lipolytic oscillations and disturbed the pulsatility. Exogenous FFAs suppressed lipolysis and oscillatory amplitude, possibly because of increased cytosolic long-chain coenzyme A (LC-CoA). Increasing percent BSA increased stimulated lipolysis and oscillatory amplitude, possibly because of decreased intracellular LC-CoA. These data show, for the first time, intrinsic lipolytic oscillations, which are glucose dependent and modulated by FFAs. We hypothesize that lipolytic oscillations are driven by oscillatory glucose metabolism, which leads to oscillatory relief of LC-CoA inhibition of triglyceride lipase(s). The results contribute to the understanding of physiological and biochemical regulators of lipolysis, such as glucose and FFAs. Lipolytic oscillations may be beneficial in the delivery of FFAs to liver, pancreas, and other tissues.


Assuntos
Adipócitos/metabolismo , Ácidos Graxos não Esterificados/fisiologia , Glucose/fisiologia , Lipólise/fisiologia , Adipócitos/efeitos dos fármacos , Animais , Ácidos Graxos não Esterificados/metabolismo , Técnicas In Vitro , Isoproterenol/farmacologia , Masculino , Ácido Oleico/farmacologia , Ratos , Ratos Sprague-Dawley
7.
Obes Res ; 13(12): 2058-65, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16421338

RESUMO

OBJECTIVE: We showed glucose-dependent lipolytic oscillations in adipocytes that are modulated by free fatty acids (FFAs). We hypothesized that the oscillations are driven by oscillatory glucose metabolism that leads to oscillatory formation of alpha-glycerophosphate (alpha-GP), oscillatory removal of long-chain coenzyme A (LC-CoA) by alpha-GP to form triglycerides, and oscillatory relief of LC-CoA inhibition of triglyceride lipases. This study examined the effect of insulin on this hypothesis. RESEARCH METHODS AND PROCEDURES: Samples were collected every minute from perifused rat adipocytes during the basal state followed by insulin (+/-glucose) or isoproterenol (+/-insulin; n = 4 each). RESULTS: Insulin caused a significant increase in glycerol release (18%), with a concomitant significant decrease in FFA release (38%). Without glucose, insulin had no effect on glycerol release while still decreasing FFA release (35%). Insulin (5 microU/mL) attenuated the response of lipolysis to isoproterenol (approximately 3-fold increase with isoproterenol vs. 2-fold increase with insulin + isoproterenol). However, 1 mU/mL insulin amplified the lipolytic response ( approximately 5-fold increase in glycerol release with insulin + isoproterenol), with a concomitant increase in FFA reesterification (no increase in FFA release compared with isoproterenol alone). DISCUSSION: We interpret these results to be due to insulin's ability to increase glucose uptake and conversion to alpha-GP, thus removing LC-CoA inhibition of triglyceride lipases. While the physiological importance of lipolytic oscillations remains to be determined, we hypothesize that such an oscillation may play an important role in the delivery of FFAs to the liver, beta cells, and other tissues.


Assuntos
Adipócitos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glucose/fisiologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Lipólise/efeitos dos fármacos , Acil Coenzima A/metabolismo , Adipócitos/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Metabolismo Basal/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Glicerol/metabolismo , Isoproterenol/farmacologia , Lactatos/metabolismo , Lipólise/fisiologia , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
8.
J Biol Chem ; 279(26): 27177-86, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15105415

RESUMO

Skeletal muscle insulin resistance may be aggravated by intramyocellular accumulation of fatty acid-derived metabolites that inhibit insulin signaling. We tested the hypothesis that enhanced fatty acid oxidation in myocytes should protect against fatty acid-induced insulin resistance by limiting lipid accumulation. L6 myotubes were transduced with adenoviruses encoding carnitine palmitoyltransferase I (CPT I) isoforms or beta-galactosidase (control). Two to 3-fold overexpression of L-CPT I, the endogenous isoform in L6 cells, proportionally increased oxidation of the long-chain fatty acids palmitate and oleate and increased insulin stimulation of [(14)C]glucose incorporation into glycogen by 60% while enhancing insulin-stimulated phosphorylation of p38MAPK. Incubation of control cells with 0.2 mm palmitate for 18 h caused accumulation of triacylglycerol, diacylglycerol, and ceramide (but not long-chain acyl-CoA) and decreased insulin-stimulated [(14)C]glucose incorporation into glycogen (60%), [(3)H]deoxyglucose uptake (60%), and protein kinase B phosphorylation (20%). In the context of L-CPT I overexpression, palmitate preincubation produced a relative decrease in insulin-stimulated incorporation of [(14)C]glucose into glycogen (60%) and [(3)H]deoxyglucose uptake (40%) but did not inhibit phosphorylation of protein kinase B. Due to the enhancement of insulin-stimulated glucose metabolism induced by L-CPT I overexpression itself, net insulin-stimulated incorporation of [(14)C]glucose into glycogen and [(3)H]deoxyglucose uptake in L-CPT I-transduced, palmitate-treated cells were significantly greater than in palmitate-treated control cells (71 and 75% greater, respectively). However, L-CPT I overexpression failed to decrease intracellular triacylglycerol, diacylglycerol, ceramide, or long-chain acyl-CoA. We propose that accelerated beta-oxidation in muscle cells exerts an insulin-sensitizing effect independently of changes in intracellular lipid content.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Insulina/farmacologia , Metabolismo dos Lipídeos , Fibras Musculares Esqueléticas/metabolismo , Adenoviridae/genética , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Desoxiglucose/metabolismo , Glicogênio/metabolismo , Insulina/metabolismo , Isoenzimas , Fibras Musculares Esqueléticas/citologia , Oxirredução , Palmitatos/metabolismo , RNA Mensageiro/biossíntese , Ratos , Transdução de Sinais , Transdução Genética
9.
Biochem J ; 369(Pt 1): 173-8, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12356335

RESUMO

Glucose-induced insulin secretion from isolated, perifused rat islets is pulsatile with a period of about 5-10 min, similar to the insulin oscillations that are seen in healthy humans but which are impaired in Type II diabetes. We evaluated the pattern of enhancement by the potent incretin, glucagon-like peptide 1 (GLP-1). GLP-1 increased the amplitude of pulses and the magnitude of insulin secretion from the perifused islets, without affecting the average time interval between pulses. Forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine had the same effect, suggesting that the effect was due to elevated cAMP levels. The possibility that cAMP might enhance the amplitude of pulses by reducing phosphofructo-2-kinase (PFK-2) activity was eliminated when the liver isoform of PFK-2 was shown to be absent from beta-cells. The possibility that cAMP enhanced pulsatile secretion, at least in part, by stimulating lipolysis was supported by the observations that added oleate had a similar effect on secretion, and that the incretin effect of GLP-1 was inhibited by the lipase inhibitor orlistat. These data show that the physiological incretin GLP-1 preserves and enhances normal pulsatile insulin secretion, which may be essential in proposed therapeutic uses of GLP-1 or its analogues.


Assuntos
Ácidos Graxos/farmacologia , Glucagon/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Precursores de Proteínas/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Colforsina/farmacologia , Peptídeo 1 Semelhante ao Glucagon , Secreção de Insulina , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Lipólise , Masculino , Fosfofrutoquinase-2/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...