Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 110(1): 130-139, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801701

RESUMO

The endocrinology regulating ovulation of the desired number of oocytes in the ovarian cycle is well described, particularly in mono-ovulatory species. Less is known about the characteristics that make one follicle suitable for ovulation while most other follicles die by atresia. Bromodeoxyuridine (BrdU) injection was used to characterize granulosa cell proliferation rates in developing ovarian follicles in the estrous cycle of mice. This methodology allowed identification of follicle diameters of secondary (80-130 µm), follicle-stimulating hormone (FSH)-sensitive (130-170 µm), FSH-dependent (170-350 µm), and preovulatory (>350 µm) follicles. Few preovulatory-sized follicles were present in the ovaries of mice at estrus, the beginning of the cycle. Progressive increases were seen at metestrus and diestrus, when full accumulation of the preovulatory cohort (~10 follicles) occurred. BrdU pulse-chase studies determined granulosa cell proliferation rates in the 24-48 h before the follicle reached the preovulatory stage. This showed that slow-growing follicles were not able to survive to the preovulatory stage. Mathematical modeling of follicle growth rates determined that the largest follicles at the beginning of the cycle had the greatest chance of becoming preovulatory. However, smaller follicles could enter the preovulatory follicle pool if low numbers of large antral follicles were present at the beginning of the cycle. In this instance, rapidly growing follicles had a clear selection advantage. The developing follicle pool displays heterogeneity in granulosa cell proliferation rates, even among follicles at the same stage of development. This parameter appears to influence whether a follicle can ovulate or become atretic.


Assuntos
Folículo Ovariano , Ovulação , Humanos , Feminino , Camundongos , Animais , Bromodesoxiuridina/metabolismo , Folículo Ovariano/metabolismo , Ovulação/fisiologia , Ovário , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo
2.
Biol Reprod ; 109(5): 684-692, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552056

RESUMO

There are conflicting estimates of the duration of mouse primary follicle development. An accurate determination is needed for studies examining preantral follicle survival and mathematical modeling of folliculogenesis. Primary follicle granulosa cell proliferation rates are low and variable, which may explain the variation in duration estimates. In the present study, female C57Bl6/J mice were exposed to bromodeoxyuridine for 48 hours, to label the proliferating granulosa cells in a large proportion of primary follicles. The bromodeoxyuridine-containing water was then withdrawn and replaced with drug-free water and the mice were euthanized at 0, 1, 3, 6, 10, or 13 days post-bromodeoxyuridine withdrawal. Granulosa cells were bromodeoxyuridine labeled in 48% of primary follicles at day 0, but this decreased to 5% over the 13-day period, as the labeled primary follicles progressed to the secondary follicle stage. Curve-fitting estimated that the last of the bromodeoxyuridine-labeled primary follicles would progress to the secondary stage by 13.7 days. Mathematical models that assumed constant rates of primary follicle proliferation were fitted to the data, but the observed pattern of bromodeoxyuridine-labeled primary follicle disappearance could not be replicated. The level of immunoreactivity for bromodeoxyuridine and proliferating-cell nuclear antigen in primary follicles revealed follicles with no granulosa cell proliferation during the 48-h bromodeoxyuridine-exposure period had resumed proliferation 1 or 3 days later. Therefore, primary follicle granulosa cells proliferate after follicle activation, but proliferation rates gradually increase as the follicle develops. Prior estimates of primary follicle duration are inaccurate due to the assumption that follicles develop at a constant rate.


Assuntos
Células da Granulosa , Folículo Ovariano , Feminino , Camundongos , Animais , Bromodesoxiuridina , Folículo Ovariano/fisiologia , Células da Granulosa/fisiologia , Proliferação de Células , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...