Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22281202

RESUMO

Hospital admission for COVID-19 remains common despite the successful development of vaccines and treatments. Thus, there is an ongoing need to identify targets for new COVID-19 therapies. Alternative splicing is an essential mechanism for generating functional diversity in protein isoforms and influences immune response to infection. However, the causal role of alternative splicing in COVID-19 severity and its potential therapeutic relevance is not fully understood. In this study, we evaluated the causal role of alternative splicing in COVID-19 severity and susceptibility using Mendelian randomization (MR). To do so, we performed two-sample MR to assess whether cis-sQTLs spanning 8,172 gene splicing in 5,295 genes were associated with COVID-19 outcomes in the COVID-19 Host Genetics Initiative, including up to 158,840 COVID-19 cases and 2,782,977 population controls. We identified that alternative splicing in lungs, rather than total RNA expression of OAS1, ATP11A, DPP9 and NPNT, was associated with COVID-19 severity. MUC1 splicing was associated with COVID-19 susceptibility. Further colocalization analyses supported a shared genetic mechanism between COVID-19 severity with idiopathic pulmonary fibrosis at ATP11A and DPP9 loci, and with chronic obstructive lung diseases at NPNT. We lastly showed that ATP11A, DPP9, NPNT, and MUC1 were highly expressed in lung alveolar epithelial cells, both in COVID-19 uninfected and infected samples. Taken together, these findings clarify the importance of alternative splicing of proteins in the lung for COVID-19 and other respiratory diseases, providing isoform-based targets for drug discovery.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267459

RESUMO

Genome-wide association studies (GWAS) of coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) have identified genetic loci associated with both traits, suggesting possible shared biological mechanisms. Using updated GWAS of COVID-19 and IPF, we evaluated the genetic overlap between these two diseases and identified four genetic loci (including one novel) with likely shared causal variants between severe COVID-19 and IPF. Although there was a positive genetic correlation between COVID-19 and IPF, two of these four shared genetic loci had an opposite direction of effect. IPF-associated genetic variants related to telomere dysfunction and spindle assembly showed no association with COVID-19 phenotypes. Together, these results suggest there are both shared and distinct biological processes driving IPF and severe COVID-19 phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA