Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014308

RESUMO

A major challenge in plant biology is to understand how the plant hormone auxin regulates diverse transcriptional responses throughout development, in different environments, and in different species. The answer may lie in the specific complement of auxin signaling components in each cell. The balance between activators (class-A AUXIN RESPONSE FACTORS) and repressors (class-B ARFs) is particularly important. It is unclear how this balance is achieved. Through comparative analysis of novel, dominant mutants in maize and the moss Physcomitrium patens , we have discovered a ∼500-million-year-old mechanism of class-B ARF protein level regulation, important in determining cell fate decisions across land plants. Thus, our results add a key piece to the puzzle of how auxin regulates plant development.

2.
Plant Cell ; 34(7): 2505-2517, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35274692

RESUMO

Since Mendel, maize has been a powerhouse of fundamental genetics research. From testing the Mendelian laws of inheritance, to the first genetic and cytogenetic maps, to the use of whole-genome sequencing data for crop improvement, maize is at the forefront of genetics advances. Underpinning much of this revolutionary work are the classic morphological mutants; the "freaks" that stood out in the field to even the untrained eye. Here we review some of these classic developmental mutants and their importance in the history of genetics, as well as their key role in our fundamental understanding of plant development.


Assuntos
Zea mays , Bases de Dados Genéticas , Padrões de Herança , Mutação , Zea mays/genética
3.
Plants (Basel) ; 8(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585196

RESUMO

Delineation between distinct populations of cells is essential for organ development. Boundary formation is necessary for the maintenance of pluripotent meristematic cells in the shoot apical meristem (SAM) and differentiation of developing organs. Boundaries form between the meristem and organs, as well as between organs and within organs. Much of the research into the boundary gene regulatory network (GRN) has been carried out in the eudicot model Arabidopsis thaliana. This work has identified a dynamic network of hormone and gene interactions. Comparisons with other eudicot models, like tomato and pea, have shown key conserved nodes in the GRN and species-specific alterations, including the recruitment of the boundary GRN in leaf margin development. How boundaries are defined in monocots, and in particular the grass family which contains many of the world's staple food crops, is not clear. In this study, we review knowledge of the grass boundary GRN during vegetative development. We particularly focus on the development of a grass-specific within-organ boundary, the ligule, which directly impacts leaf architecture. We also consider how genome engineering and the use of natural diversity could be leveraged to influence key agronomic traits relative to leaf and plant architecture in the future, which is guided by knowledge of boundary GRNs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...