Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653806

RESUMO

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Assuntos
Cóclea , Animais , Camundongos , Cobaias , Humanos , Ratos , Suínos , Células Ciliadas Auditivas , Microscopia de Fluorescência , Aprendizado de Máquina
2.
Front Cell Dev Biol ; 11: 1247324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900280

RESUMO

The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin.

3.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693382

RESUMO

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

4.
J Assoc Res Otolaryngol ; 24(2): 147-157, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725777

RESUMO

PURPOSE: A probe that binds to unfixed collagen fibrils was used to image the shapes and fibrous properties of the TM and BM. The probe (CNA35) is derived from the bacterial adhesion protein CNA. We present confocal images of hydrated gerbil TM, BM, and other cochlear structures stained with fluorescently labeled CNA35. A primary purpose of this article is to describe the use of the CNA35 collagen probe in the cochlea. METHODS: Recombinant poly-histidine-tagged CNA35 was expressed in Escherichia coli, purified by cobalt-affinity chromatography, fluorescence labeled, and further purified by gel filtration chromatography. Cochleae from freshly harvested gerbil bullae were irrigated with and then incubated in CNA35 for periods ranging from 2 h - overnight. The cochleae were fixed, decalcified, and dissected. Isolated cochlear turns were imaged by confocal microscopy. RESULTS: The CNA35 probe stained the BM and TM, and volumetric imaging revealed the shape of these structures and the collagen fibrils within them. The limbal zone of the TM stained intensely. In samples from the cochlear base, intense staining was detected on the side of the TM that faces hair cells. In the BM pectinate zone, staining was intense at the upper and lower boundaries. The BM arcuate zone was characterized by a prominent longitudinal collagenous structure. The spiral ligament, limbus and lamina stained for collagen, and within the spiral limbus the habenula perforata were outlined with intense staining. CONCLUSION: The CNA35 probe provides a unique and useful view of collagenous structures in the cochlea.


Assuntos
Membrana Basilar , Membrana Tectorial , Animais , Membrana Basilar/metabolismo , Gerbillinae , Membrana Tectorial/química , Membrana Tectorial/metabolismo , Cóclea/metabolismo , Colágeno/análise , Colágeno/metabolismo , Células Ciliadas Auditivas/química
5.
EMBO J ; 42(4): e112118, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36594367

RESUMO

Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.


Assuntos
Células Ciliadas Auditivas Internas , Transdução de Sinais , Animais , Células Ciliadas Auditivas Internas/fisiologia , Potenciais de Ação/fisiologia , Cóclea/fisiologia , Mamíferos
6.
Mol Ther Methods Clin Dev ; 26: 355-370, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36034774

RESUMO

The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.

7.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33735112

RESUMO

To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.


Assuntos
Aminoglicosídeos/efeitos adversos , Cóclea/efeitos dos fármacos , Ototoxicidade/prevenção & controle , Animais , Cóclea/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Gentamicinas/efeitos adversos , Gentamicinas/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Fator de Transcrição Associado à Microftalmia/genética , Neomicina/efeitos adversos , Técnicas de Cultura de Órgãos , Ototoxicidade/etiologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
J Physiol ; 599(7): 2015-2036, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33559882

RESUMO

KEY POINTS: The aim was to determine whether detachment of the tectorial membrane (TM) from the organ of Corti in Tecta/Tectb-/- mice affects the biophysical properties of cochlear outer hair cells (OHCs). Tecta/Tectb-/- mice have highly elevated hearing thresholds, but OHCs mature normally. Mechanoelectrical transducer (MET) channel resting open probability (Po ) in mature OHC is ∼50% in endolymphatic [Ca2+ ], resulting in a large standing depolarizing MET current that would allow OHCs to act optimally as electromotile cochlear amplifiers. MET channel resting Po in vivo is also high in Tecta/Tectb-/- mice, indicating that the TM is unlikely to statically bias the hair bundles of OHCs. Distortion product otoacoustic emissions (DPOAEs), a readout of active, MET-dependent, non-linear cochlear amplification in OHCs, fail to exhibit long-lasting adaptation to repetitive stimulation in Tecta/Tectb-/- mice. We conclude that during prolonged, sound-induced stimulation of the cochlea the TM may determine the extracellular Ca2+ concentration near the OHC's MET channels. ABSTRACT: The tectorial membrane (TM) is an acellular structure of the cochlea that is attached to the stereociliary bundles of the outer hair cells (OHCs), electromotile cells that amplify motion of the cochlear partition and sharpen its frequency selectivity. Although the TM is essential for hearing, its role is still not fully understood. In Tecta/Tectb-/- double knockout mice, in which the TM is not coupled to the OHC stereocilia, hearing sensitivity is considerably reduced compared with that of wild-type animals. In vivo, the OHC receptor potentials, assessed using cochlear microphonics, are symmetrical in both wild-type and Tecta/Tectb-/- mice, indicating that the TM does not bias the hair bundle resting position. The functional maturation of hair cells is also unaffected in Tecta/Tectb-/- mice, and the resting open probability of the mechanoelectrical transducer (MET) channel reaches values of ∼50% when the hair bundles of mature OHCs are bathed in an endolymphatic-like Ca2+ concentration (40 µM) in vitro. The resultant large MET current depolarizes OHCs to near -40 mV, a value that would allow optimal activation of the motor protein prestin and normal cochlear amplification. Although the set point of the OHC receptor potential transfer function in vivo may therefore be determined primarily by endolymphatic Ca2+ concentration, repetitive acoustic stimulation fails to produce adaptation of MET-dependent otoacoustic emissions in vivo in the Tecta/Tectb-/- mice. Therefore, the TM is likely to contribute to the regulation of Ca2+ levels around the stereocilia, and thus adaptation of the OHC MET channel during prolonged sound stimulation.


Assuntos
Estereocílios , Membrana Tectorial , Animais , Matriz Extracelular , Células Ciliadas Auditivas Externas , Camundongos , Emissões Otoacústicas Espontâneas , Transdutores
9.
Nat Protoc ; 15(12): 3777-3787, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106680

RESUMO

The research community is in a race to understand the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, to repurpose currently available antiviral drugs and to develop new therapies and vaccines against coronavirus disease 2019 (COVID-19). One major challenge in achieving these goals is the paucity of suitable preclinical animal models. Mice constitute ~70% of all the laboratory animal species used in biomedical research. Unfortunately, SARS-CoV-2 infects mice only if they have been genetically modified to express human ACE2. The inherent resistance of wild-type mice to SARS-CoV-2, combined with a wealth of genetic tools that are available only for modifying mice, offers a unique opportunity to create a versatile set of genetically engineered mouse models useful for COVID-19 research. We propose three broad categories of these models and more than two dozen designs that may be useful for SARS-CoV-2 research and for fighting COVID-19.


Assuntos
COVID-19/genética , Modelos Animais de Doenças , Enzima de Conversão de Angiotensina 2/genética , Animais , Sequência de Bases , Técnicas de Introdução de Genes , Engenharia Genética , Loci Gênicos/genética , Camundongos , Camundongos Transgênicos , Mutação Puntual
10.
J Physiol ; 598(18): 3891-3910, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32608086

RESUMO

KEY POINTS: Age-related hearing loss (ARHL) is a very heterogeneous disease, resulting from cellular senescence, genetic predisposition and environmental factors (e.g. noise exposure). Currently, we know very little about age-related changes occurring in the auditory sensory cells, including those associated with the outer hair cells (OHCs). Using different mouse strains, we show that OHCs undergo several morphological and biophysical changes in the ageing cochlea. Ageing OHCs also exhibited the progressive loss of afferent and efferent synapses. We also provide evidence that the size of the mechanoelectrical transducer current is reduced in ageing OHCs, highlighting its possible contribution in cochlear ageing. ABSTRACT: Outer hair cells (OHCs) are electromotile sensory receptors that provide sound amplification within the mammalian cochlea. Although OHCs appear susceptible to ageing, the progression of the pathophysiological changes in these cells is still poorly understood. By using mouse strains with a different progression of hearing loss (C57BL/6J, C57BL/6NTac, C57BL/6NTacCdh23+ , C3H/HeJ), we have identified morphological, physiological and molecular changes in ageing OHCs (9-12 kHz cochlear region). We show that by 6 months of age, OHCs from all strains underwent a reduction in surface area, which was not a sign of degeneration. Although the ageing OHCs retained a normal basolateral membrane protein profile, they showed a reduction in the size of the K+ current and non-linear capacitance, a readout of prestin-dependent electromotility. Despite these changes, OHCs have a normal Vm and retain the ability to amplify sound, as distortion product otoacoustic emission thresholds were not affected in aged, good-hearing mice (C3H/HeJ, C57BL/6NTacCdh23+ ). The loss of afferent synapses was present in all strains at 15 months. The number of efferent synapses per OHCs, defined as postsynaptic SK2 puncta, was reduced in aged OHCs of all strains apart from C3H mice. Several of the identified changes occurred in aged OHCs from all mouse strains, thus representing a general trait in the pathophysiological progression of age-related hearing loss, possibly aimed at preserving functionality. We have also shown that the mechanoelectrical transduction (MET) current from OHCs of mice harbouring the Cdh23ahl allele is reduced with age, highlighting the possibility that changes in the MET apparatus could play a role in cochlear ageing.


Assuntos
Células Ciliadas Auditivas Externas , Emissões Otoacústicas Espontâneas , Animais , Caderinas , Cóclea , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
11.
Hum Genet ; 139(10): 1315-1323, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32382995

RESUMO

We present detailed comparative analyses to assess population-level differences in patterns of genetic deafness between European/American and Japanese cohorts with non-syndromic hearing loss. One thousand eighty-three audiometric test results (921 European/American and 162 Japanese) from members of 168 families (48 European/American and 120 Japanese) with non-syndromic hearing loss secondary to pathogenic variants in one of three genes (KCNQ4, TECTA, WFS1) were studied. Audioprofile characteristics, specific mutation types, and protein domains were considered in the comparative analyses. Our findings support differences in audioprofiles driven by both mutation type (non-truncating vs. truncating) and ethnic background. The former finding confirms data that ascribe a phenotypic consequence to different mutation types in KCNQ4; the latter finding suggests that there are ethnic-specific effects (genetic and/or environmental) that impact gene-specific audioprofiles for TECTA and WFS1. Identifying the drivers of ethnic differences will refine our understanding of phenotype-genotype relationships and the biology of hearing and deafness.


Assuntos
Proteínas da Matriz Extracelular/genética , Genótipo , Perda Auditiva Neurossensorial/genética , Canais de Potássio KCNQ/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Audiometria , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Proteínas Ligadas por GPI/genética , Expressão Gênica , Estudos de Associação Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etnologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Japão , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Estados Unidos , População Branca
12.
J Neurosci Res ; 98(9): 1745-1763, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31762086

RESUMO

The aging cochlea is subjected to a number of pathological changes to play a role in the onset of age-related hearing loss (ARHL). Although ARHL has often been thought of as the result of the loss of hair cells, it is in fact a disorder with a complex etiology, arising from the changes to both the organ of Corti and its supporting structures. In this study, we examine two aging pathologies that have not been studied in detail despite their apparent prevalence; the fusion, elongation, and engulfment of cochlear inner hair cell stereocilia, and the changes that occur to the tectorial membrane (TM), a structure overlying the organ of Corti that modulates its physical properties in response to sound. Our work demonstrates that similar pathological changes occur in these two structures in the aging cochleae of both mice and humans, examines the ultrastructural changes that underlie stereocilial fusion, and identifies the lost TM components that lead to changes in membrane structure. We place these changes into the context of the wider pathology of the aging cochlea, and identify how they may be important in particular for understanding the more subtle hearing pathologies that precede auditory threshold loss in ARHL.


Assuntos
Envelhecimento/fisiologia , Cóclea/patologia , Perda Auditiva/etiologia , Estereocílios/patologia , Membrana Tectorial/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Cóclea/ultraestrutura , Feminino , Células Ciliadas Auditivas , Audição , Humanos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Pessoa de Meia-Idade , Órgão Espiral , Estereocílios/ultraestrutura , Membrana Tectorial/fisiologia , Membrana Tectorial/ultraestrutura
13.
Front Cell Neurosci ; 13: 416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572129

RESUMO

Aminoglycoside antibiotics are widely prescribed to treat a variety of serious bacterial infections. They are extremely useful clinical tools, but have adverse side effects such as oto- and nephrotoxicity. Once inside a cell they are thought to cause mitochondrial dysfunction, subsequently leading to apoptotic cell death due to an increase in reactive oxygen species (ROS) production. Here we present evidence of a direct effect of gentamicin (the most commonly prescribed aminoglycoside) on the respiratory activities of isolated rat liver and kidney mitochondria. We show that gentamicin stimulates state 4 and inhibits state 3u respiratory rates, thereby reducing the respiratory control ratio (RCR) whilst simultaneously causing a collapse of the mitochondrial membrane potential (MtMP). We propose that gentamicin behaves as an uncoupler of the electron transport chain (ETC) - a hypothesis supported by our evidence that it reduces the production of mitochondrial ROS (MtROS). We also show that gentamicin collapses the MtMP in the sensory hair cells (HCs) of organotypic mouse cochlear cultures.

14.
JCI Insight ; 4(15)2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391343

RESUMO

Aminoglycoside (AG) antibiotics are widely used to prevent life-threatening infections, and cisplatin is used in the treatment of various cancers, but both are ototoxic and result in loss of sensory hair cells from the inner ear. ORC-13661 is a new drug that was derived from PROTO-1, a compound first identified as protective in a large-scale screen utilizing hair cells in the lateral line organs of zebrafish larvae. Here, we demonstrate, in zebrafish larvae and in mouse cochlear cultures, that ORC-13661 provides robust protection of hair cells against both ototoxins, the AGs and cisplatin. ORC-13661 also prevents both hearing loss in a dose-dependent manner in rats treated with amikacin and the loading of neomycin-Texas Red into lateral line hair cells. In addition, patch-clamp recordings in mouse cochlear cultures reveal that ORC-13661 is a high-affinity permeant blocker of the mechanoelectrical transducer (MET) channel in outer hair cells, suggesting that it may reduce the toxicity of AGs by directly competing for entry at the level of the MET channel and of cisplatin by a MET-dependent mechanism. ORC-13661 is therefore a promising and versatile protectant that reversibly blocks the hair cell MET channel and operates across multiple species and toxins.


Assuntos
Antibacterianos/toxicidade , Antineoplásicos/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Ototoxicidade/prevenção & controle , Substâncias Protetoras/farmacologia , Tiofenos/farmacologia , Ureia/análogos & derivados , Amicacina/toxicidade , Aminoglicosídeos/toxicidade , Animais , Técnicas de Cultura de Células , Células Cultivadas , Cisplatino/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Ciliadas Auditivas/metabolismo , Humanos , Microscopia Intravital , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Ototoxicidade/etiologia , Técnicas de Patch-Clamp , Substâncias Protetoras/uso terapêutico , Ratos , Tiofenos/uso terapêutico , Imagem com Lapso de Tempo , Ureia/farmacologia , Ureia/uso terapêutico , Peixe-Zebra
15.
Front Mol Neurosci ; 12: 147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249509

RESUMO

CEACAM16 is a non-collagenous protein of the tectorial membrane, an extracellular structure of the cochlea essential for normal hearing. Dominant and recessive mutations in CEACAM16 have been reported to cause postlingual and progressive forms of deafness in humans. In a previous study of young Ceacam16ßgal/ßgal null mutant mice on a C57Bl/6J background, the incidence of spontaneous otoacoustic emissions (SOAEs) was greatly increased relative to Ceacam16+/+ and Ceacam16+/ßgal mice, but auditory brain-stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were near normal, indicating auditory thresholds were not significantly affected. To determine if the loss of CEACAM16 leads to hearing loss at later ages in this mouse line, cochlear structure and auditory function were examined in Ceacam16+/+, Ceacam16+/ßgal and Ceacam16ßgal/ßgal mice at 6 and 12 months of age and compared to that previously described at 1 month. Analysis of older Ceacam16ßgal/ßgal mice reveals a progressive loss of matrix from the core of the tectorial membrane that is more extensive in the apical, low-frequency regions of the cochlea. In Ceacam16ßgal/ßgal mice at 6-7 months, the DPOAE magnitude at 2f1-f2 and the incidence of SOAEs both decrease relative to young animals. By ∼12 months, SOAEs and DPOAEs are not detected in Ceacam16ßgal/ßgal mice and ABR thresholds are increased by up to ∼40 dB across frequency, despite a complement of hair cells similar to that present in Ceacam16+/+ mice. Although SOAE incidence decreases with age in Ceacam16ßgal/ßgal mice, it increases in aging heterozygous Ceacam16+/ßgal mice and is accompanied by a reduction in the accumulation of CEACAM16 in the tectorial membrane relative to controls. An apically-biased loss of matrix from the core of the tectorial membrane, similar to that observed in young Ceacam16ßgal/ßgal mice, is also seen in Ceacam16+/+ and Ceacam16+/ßgal mice, and other strains of wild-type mice, but at much later ages. The loss of Ceacam16 therefore accelerates age-related degeneration of the tectorial membrane leading, as in humans with mutations in CEACAM16, to a late-onset progressive form of hearing loss.

16.
J Med Chem ; 62(11): 5312-5329, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31083995

RESUMO

Aminoglycosides (AGs) are broad-spectrum antibiotics used for the treatment of serious bacterial infections but have use-limiting side effects including irreversible hearing loss. Here, we assessed the otoprotective profile of carvedilol in mouse cochlear cultures and in vivo zebrafish assays and investigated its mechanism of protection which, we found, may be mediated by a block of the hair cell's mechanoelectrical transducer (MET) channel, the major entry route for the AGs. To understand the full otoprotective potential of carvedilol, a series of 18 analogues were prepared and evaluated for their effect against AG-induced damage as well as their affinity for the MET channel. One derivative was found to confer greater protection than carvedilol itself in cochlear cultures and also to bind more tightly to the MET channel. At higher concentrations, both carvedilol and this derivative were toxic in cochlear cultures but not in zebrafish, suggesting a good therapeutic window under in vivo conditions.


Assuntos
Aminoglicosídeos/efeitos adversos , Carvedilol/síntese química , Carvedilol/farmacologia , Desenho de Fármacos , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Animais , Carvedilol/química , Técnicas de Química Sintética , Citoproteção/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Camundongos , Peixe-Zebra
17.
Artigo em Inglês | MEDLINE | ID: mdl-30617060

RESUMO

Up to five distinct cell-surface specializations interconnect the stereocilia and the kinocilium of the mature hair bundle in some species: kinocilial links, tip links, top connectors, shaft connectors, and ankle links. In developing hair bundles, transient lateral links are prominent. Mutations in genes encoding proteins associated with these links cause Usher deafness/blindness syndrome or nonsyndromic (isolated) forms of human hereditary deafness, and mice with constitutive or conditional alleles of these genes have provided considerable insight into the molecular composition and function of the different links. We describe the structure of these links and review evidence showing CDH23 and PCDH15 are components of the tip, kinocilial, and transient-lateral links, that stereocilin (STRC) and protein tyrosine phosphatase (PTPRQ) are associated with top and shaft connectors, respectively, and that USH2A and ADGRV1 are associated with the ankle links. Whereas tip links are required for mechanoelectrical transduction, all link proteins play key roles in the normal development and/or the maintenance of hair bundle structure and function. Recent crystallographic and single-particle analyses of PCDH15 and CDH23 provide insight as to how the structure of tip link may contribute to the elastic element predicted to lie in series with the hair cell's mechanoelectrical transducer channel.


Assuntos
Cílios/genética , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/fisiologia , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Cílios/fisiologia , Surdez/genética , Proteínas da Matriz Extracelular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mecanotransdução Celular , Camundongos , Mutação , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética
18.
Proc Natl Acad Sci U S A ; 115(33): 8388-8393, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061390

RESUMO

The mechanosensory hair cells of the inner ear are required for hearing and balance and have a distinctive apical structure, the hair bundle, that converts mechanical stimuli into electrical signals. This structure comprises a single cilium, the kinocilium, lying adjacent to an ensemble of actin-based projections known as stereocilia. Hair bundle polarity depends on kinociliary protocadherin-15 (Pcdh15) localization. Protocadherin-15 is found only in hair-cell kinocilia, and is not localized to the primary cilia of adjacent supporting cells. Thus, Pcdh15 must be specifically targeted and trafficked into the hair-cell kinocilium. Here we show that kinocilial Pcdh15 trafficking relies on cell type-specific coupling to the generic intraflagellar transport (IFT) transport mechanism. We uncover a role for fibroblast growth factor receptor 1 (FGFR1) in loading Pcdh15 onto kinociliary transport particles in hair cells. We find that on activation, FGFR1 binds and phosphorylates Pcdh15. Moreover, we find a previously uncharacterized role for clathrin in coupling this kinocilia-specific cargo with the anterograde IFT-B complex through the adaptor, DAB2. Our results identify a modified ciliary transport pathway used for Pcdh15 transport into the cilium of the inner ear hair cell and coordinated by FGFR1 activity.


Assuntos
Caderinas/fisiologia , Flagelos/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Precursores de Proteínas/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Relacionadas a Caderinas , Embrião de Galinha , Clatrina/fisiologia , Camundongos , Fosforilação , Transporte Proteico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/análise
19.
Curr Top Dev Biol ; 130: 217-244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853178

RESUMO

The tectorial membrane is an extracellular matrix that lies over the apical surface of the auditory epithelia in the inner ears of reptiles, birds, and mammals. Recent studies have shown it is composed of a small set of proteins, some of which are only produced at high levels in the ear and many of which are the products of genes that, when mutated, cause nonsyndromic forms of human hereditary deafness. Quite how the proteins of the tectorial membrane are assembled within the lumen of the inner ear to form a structure that is precisely regulated in its size and physical properties along the length of a tonotopically organized hearing organ is a question that remains to be fully answered. In this brief review we will summarize what is known thus far about the structure, protein composition, and function of the tectorial membrane in birds and mammals, describe how the tectorial membrane develops, and discuss major events that have occurred during the evolution of this extracellular matrix.


Assuntos
Matriz Extracelular/fisiologia , Audição/fisiologia , Membrana Tectorial/química , Membrana Tectorial/crescimento & desenvolvimento , Membrana Tectorial/fisiologia , Animais , Embrião de Galinha , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Células Ciliadas Auditivas/fisiologia , Humanos , Membrana Tectorial/ultraestrutura
20.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627650

RESUMO

Spontaneous otoacoustic emissions (SOAEs) recorded from the ear canal in the absence of sound reflect cochlear amplification, an outer hair cell (OHC) process required for the extraordinary sensitivity and frequency selectivity of mammalian hearing. Although wild-type mice rarely emit, those with mutations that influence the tectorial membrane (TM) show an incidence of SOAEs similar to that in humans. In this report, we characterized mice with a missense mutation in Tecta, a gene required for the formation of the striated-sheet matrix within the core of the TM. Mice heterozygous for the Y1870C mutation (TectaY1870C/+ ) are prolific emitters, despite a moderate hearing loss. Additionally, Kimura's membrane, into which the OHC stereocilia insert, separates from the main body of the TM, except at apical cochlear locations. Multimodal SOAEs are also observed in TectaY1870C/+ mice where energy is present at frequencies that are integer multiples of a lower-frequency SOAE (the primary). Second-harmonic SOAEs, at twice the frequency of a lower-frequency primary, are the most frequently observed. These secondary SOAEs are found in spatial regions where stimulus-evoked OAEs are small or in the noise floor. Introduction of high-level suppressors just above the primary SOAE frequency reduce or eliminate both primary and second-harmonic SOAEs. In contrast, second-harmonic SOAEs are not affected by suppressors, either above or below the second-harmonic SOAE frequency, even when they are much larger in amplitude. Hence, second-harmonic SOAEs do not appear to be spatially separated from their primaries, a finding that has implications for cochlear mechanics and the consequences of changes to TM structure.


Assuntos
Proteínas da Matriz Extracelular/genética , Células Ciliadas Auditivas Externas/fisiologia , Mutação/genética , Emissões Otoacústicas Espontâneas/fisiologia , Membrana Tectorial/fisiologia , Estimulação Acústica , Animais , Limiar Auditivo/fisiologia , Cisteína/genética , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Psicoacústica , Estatísticas não Paramétricas , Membrana Tectorial/anatomia & histologia , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...