Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacogn Mag ; 13(Suppl 3): S489-S498, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29142404

RESUMO

BACKGROUND: Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. OBJECTIVE: A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. MATERIALS AND METHODS: Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. RESULTS: Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. CONCLUSION: Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. SUMMARY: This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO2: Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-ß: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, PI: Propidium iodide, PMSF: Phenylmethylsulfonyl fluoride, pRB: Phosphorylated retinoblastoma, R. angustifolia: Ruta angustifolia L. Pers, Rb: Retinoblastoma, rpm: Rotation per minute, RPMI: Roswell Park Memorial Institute, S phase: Synthesis phase, SD: Standard deviation, SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Smac: Second mitochondria-derived activator of caspase, SPSS: Statistical Package for the Social Sciences, STAT3: Signal transducer and activation of transcription 3, tBID: Truncated BID, TNF: Tumor necrosis factor, TRADD: Tumor necrosis factor receptor type-1 associated death domain, TRAIL: TNF-related apoptosis- inducing ligand, USA: United States of America, v/v: Volume over volume.

2.
BMC Complement Altern Med ; 16(1): 389, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27729078

RESUMO

BACKGROUND: Cancer has been one of the leading causes of mortality in this era. Ruta angustifolia L. Pers has been traditionally used as an abortifacient, antihelmintic, emmenagogue and ophthalmic. In Malaysia and Singapore, the local Chinese community used it for the treatment of cancer. METHODS: In this study, the methanol and fractionated extracts (hexane, chloroform, ethyl acetate and water) of R. angustifolia were tested for its cytotoxicity using the sulforhodamide (SRB) cytotoxicity assay against HCT-116, A549, Ca Ski and MRC5 cell lines. Chemical isolation was carried out by using the high performance liquid chromatography (HPLC) and the isolated compounds were tested for its cytotoxicity against A549 cell line. Cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. The externalisation of phosphatidylserine was observed through FITC-labelling Annexin V/PI assay whilst DNA fragmentation was observed through the TUNEL assay. Other indication of apoptosis occuring through the mitochondrial pathway were the attenuation of mitochondrial membrane potential and increase in ROS production. Activation of caspase 9 and 3 were monitored. Western blot analysis was done to show the expression levels of apoptotic proteins. RESULTS: The chloroform extract (without chlorophyll) exhibited the highest cytotoxic activity with IC50 of 10.1 ± 0.15 µg/ml against A549 cell line. Further chemical investigation was thus directed to this fraction which led to the isolation of 12 compounds identified as graveoline, psoralen, kokusaginine, methoxysalen, bergapten, arborinine, moskachan B, chalepin, moskachan D, chalepensin, rutamarin and neophytadiene. Among these compounds, chalepin exhibited excellent cytotoxicity against A549 cell line with an IC50 value of 8.69 ± 2.43 µg/ml (27.64 µM). In western blot analysis, expression of p53, truncated Bid, Bax and Bak while the anti-apoptotic proteins Bcl-2, survivin, XIAP, Bcl-XL,cFLIP decreased in a time-dependent manner when A549 cells were treated with 36 µg/ml of chalepin. In addition, the level of PARP was found to decrease. CONCLUSION: Hence these findings indicated that chalepin-induced cell death might involve the intrinsic mitochodrial pathway resulting in the upregulation of pro-apoptotic proteins and downregulation of anti-apoptotic proteins. Thus, chalepin could be an excellent candidate for the development of an anticancer agent.


Assuntos
Apoptose/efeitos dos fármacos , Furocumarinas/farmacologia , Neoplasias Pulmonares , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/química , Ruta/química , Caspases/metabolismo , Linhagem Celular Tumoral , Furocumarinas/química , Furocumarinas/isolamento & purificação , Humanos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...