Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0335123, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953356

RESUMO

Candida albicans causes millions of mucosal infections in humans annually. Hyphal overgrowth on mucosal surfaces is frequently associated with tissue damage caused by candidalysin, a secreted peptide toxin that destabilizes the plasma membrane of host cells thereby promoting disease and immunopathology. Candidalysin was first identified in C. albicans strain SC5314, but recent investigations have revealed candidalysin "variants" of differing amino acid sequence in isolates of C. albicans, and the related species C. dubliniensis, and C tropicalis, suggesting that sequence variation among candidalysins may be widespread in natural populations of these Candida species. Here, we analyzed ECE1 gene sequences from 182 C. albicans isolates, 10 C. dubliniensis isolates, and 78 C. tropicalis isolates and identified 10, 3, and 2 candidalysin variants in these species, respectively. Application of candidalysin variants to epithelial cells revealed differences in the ability to cause cellular damage, changes in metabolic activity, calcium influx, MAPK signalling, and cytokine secretion, while biophysical analyses indicated that variants exhibited differences in their ability to interact with and permeabilize a membrane. This study identifies candidalysin variants with differences in biological activity that are present in medically relevant Candida species. IMPORTANCE: Fungal infections are a significant burden to health. Candidalysin is a toxin produced by Candida albicans that damages host tissues, facilitating infection. Previously, we demonstrated that candidalysins exist in the related species C. dubliniensis and C. tropicalis, thereby identifying these molecules as a toxin family. Recent genomic analyses have highlighted the presence of a small number of candidalysin "variant" toxins, which have different amino acid sequences to those originally identified. Here, we screened genome sequences of isolates of C. albicans, C. dubliniensis, and C. tropicalis and identified candidalysin variants in all three species. When applied to epithelial cells, candidalysin variants differed in their ability to cause damage, activate intracellular signaling pathways, and induce innate immune responses, while biophysical analysis revealed differences in the ability of candidalysin variants to interact with lipid bilayers. These findings suggest that intraspecies variation in candidalysin amino acid sequence may influence fungal pathogenicity.

2.
Nat Microbiol ; 9(3): 669-683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388771

RESUMO

The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.


Assuntos
Proteínas Fúngicas , Micotoxinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Micotoxinas/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
3.
Cell Rep ; 42(10): 113240, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37819761

RESUMO

The fungal pathogen Candida albicans is linked to chronic brain diseases such as Alzheimer's disease (AD), but the molecular basis of brain anti-Candida immunity remains unknown. We show that C. albicans enters the mouse brain from the blood and induces two neuroimmune sensing mechanisms involving secreted aspartic proteinases (Saps) and candidalysin. Saps disrupt tight junction proteins of the blood-brain barrier (BBB) to permit fungal brain invasion. Saps also hydrolyze amyloid precursor protein (APP) into amyloid ß (Aß)-like peptides that bind to Toll-like receptor 4 (TLR4) and promote fungal killing in vitro while candidalysin engages the integrin CD11b (Mac-1) on microglia. Recognition of Aß-like peptides and candidalysin promotes fungal clearance from the brain, and disruption of candidalysin recognition through CD11b markedly prolongs C. albicans cerebral mycosis. Thus, C. albicans is cleared from the brain through innate immune mechanisms involving Saps, Aß, candidalysin, and CD11b.


Assuntos
Antígeno CD11b , Microglia , Micoses , Receptor 4 Toll-Like , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/microbiologia , Peptídeos beta-Amiloides/metabolismo , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Microglia/metabolismo , Microglia/microbiologia , Micoses/genética , Micoses/metabolismo , Receptor 4 Toll-Like/metabolismo , Antígeno CD11b/metabolismo
4.
ACS Pharmacol Transl Sci ; 5(9): 735-751, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36110379

RESUMO

Whereas treatment of allergic diseases such as asthma relies largely on the targeting of dysregulated effector pathways, the conceptually attractive alternative of preventing them by a pharmaceutical, at-source intervention has been stymied until now by uncertainties about suitable targets and the challenges facing drug design. House dust mites (HDMs) are globally significant triggers of allergy. Group 1 HDM allergens, exemplified by Der p 1, are cysteine proteases. Their degradome has a strong disease linkage that underlies their status as risk and initiator allergens acting directly and through bystander effects on other allergens. Our objective was to test whether target-selective inhibitors of group 1 HDM allergens might provide a viable route to novel therapies. Using structure-directed design to optimize a series of pyruvamides, we undertook the first examination of whether pharmaceutically developable inhibitors of group 1 allergens might offer protection against HDM exposure. Developability criteria included durable inhibition of clinically relevant signals after a single aerosolized dose of the drug. The compounds suppressed acute airway responses of rats and mice when challenged with an HDM extract representing the HDM allergome. Inhibitory effects operated through a miscellany of downstream pathways involving, among others, IL-33, thymic stromal lymphopoietin, chemokines, and dendritic cells. IL-13 and eosinophil recruitment, indices of Th2 pathway activation, were strongly attenuated. The surprisingly expansive benefits arising from a unique at-source intervention suggest a novel approach to multiple allergic diseases in which HDMs play prominent roles and encourage exploration of these pharmaceutically developable molecules in a clinical setting.

5.
J Biol Chem ; 298(10): 102419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037968

RESUMO

Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.


Assuntos
Candida albicans , Candidíase Bucal , Receptores ErbB , Proteínas Fúngicas , Mucosa Bucal , Humanos , Candida albicans/metabolismo , Candida albicans/patogenicidade , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Candidíase Bucal/metabolismo , Candidíase Bucal/microbiologia , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia
6.
Methods Mol Biol ; 2542: 163-176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008664

RESUMO

In 2016, the first peptide toxin in any human fungal pathogen was identified. It was discovered in Candida albicans and was named candidalysin. Candidalysin is an amphipathic cationic peptide that damages cell membranes. Like most lytic peptides, candidalysin shows alpha-helical secondary structure. As the helicity and the membrane lytic activity of candidalysin are key factors for pathogenicity, here we describe in vitro approaches to monitor both its membrane-lytic function and the secondary structure. First, membrane permeabilization activity of candidalysin is measured in real time by direct electrical recording. Second, the secondary structure and helicity of candidalysin are determined by circular dichroism spectroscopy. These biophysical methods provide a means to characterize the activity and physical properties of candidalysin in vitro and will be useful in determining the structural and functional features of candidalysin and other similar cationic membrane-active peptides.


Assuntos
Proteínas Fúngicas , Micotoxinas , Candida albicans/metabolismo , Dicroísmo Circular , Proteínas Fúngicas/metabolismo , Humanos , Micotoxinas/metabolismo , Peptídeos/metabolismo , Virulência
7.
Pathogens ; 11(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456133

RESUMO

Fungal infections kill ~1 [...].

8.
mBio ; 13(1): e0351021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073742

RESUMO

Candidalysin is the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is secreted by Candida albicans and is critical for driving infection and host immune responses in several model systems. However, Candida infections are also caused by non-C. albicans species. Here, we identify and characterize orthologs of C. albicans candidalysin in C. dubliniensis and C. tropicalis. The candidalysins have different amino acid sequences, are amphipathic, and adopt a predominantly α-helical secondary structure in solution. Comparative functional analysis demonstrates that each candidalysin causes epithelial damage and calcium influx and activates intracellular signaling pathways and cytokine secretion. Importantly, C. dubliniensis and C. tropicalis candidalysins have higher damaging and activation potential than C. albicans candidalysin and exhibit more rapid membrane binding and disruption, although both fungal species cause less damage to epithelial cells than C. albicans. This study identifies the first family of peptide cytolysins in human-pathogenic fungi. IMPORTANCE Pathogenic fungi kill an estimated 1.5 million people every year. Recently, we discovered that the fungal pathogen Candida albicans secretes a peptide toxin called candidalysin during mucosal infection. Candidalysin causes damage to host cells, a process that supports disease progression. However, fungal infections are also caused by Candida species other than C. albicans. In this work, we identify and characterize two additional candidalysin toxins present in the related fungal pathogens C. dubliniensis and C. tropicalis. While the three candidalysins have different amino acid sequences, all three toxins are α-helical and amphipathic. Notably, the candidalysins from C. dubliniensis and C. tropicalis are more potent at inducing cell damage, calcium influx, mitogen-activated protein kinase signaling, and cytokine responses than C. albicans candidalysin, with the C. dubliniensis candidalysin having the most rapid membrane binding kinetics. These observations identify the candidalysins as the first family of peptide toxins in human-pathogenic fungi.


Assuntos
Micotoxinas , Humanos , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Candida tropicalis , Peptídeos/metabolismo , Citocinas/metabolismo
9.
PLoS Pathog ; 17(9): e1009884, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506615

RESUMO

Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.


Assuntos
Candida albicans/genética , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alelos , Animais , Candida albicans/patogenicidade , Feminino , Variação Genética , Humanos , Camundongos , Virulência
10.
Cell Microbiol ; 23(10): e13371, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34085369

RESUMO

Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.


Assuntos
Candidíase , Proteínas Fúngicas , Candida albicans , Células Epiteliais , Humanos , Necrose
11.
Front Microbiol ; 12: 643639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927703

RESUMO

Fungi are ubiquitous organisms that thrive in diverse natural environments including soils, plants, animals, and the human body. In response to warmth, humidity, and moisture, certain fungi which grow on crops and harvested foodstuffs can produce mycotoxins; secondary metabolites which when ingested have a deleterious impact on health. Ongoing research indicates that some mycotoxins and, more recently, peptide toxins are also produced during active fungal infection in humans and experimental models. A combination of innate and adaptive immune recognition allows the host to eliminate invading pathogens from the body. However, imbalances in immune homeostasis often facilitate microbial infection. Despite the wide-ranging effects of fungal toxins on health, our understanding of toxin-mediated modulation of immune responses is incomplete. This review will explore the current understanding of fungal toxins and how they contribute to the modulation of host immunity.

12.
Front Microbiol ; 12: 633047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643264

RESUMO

Fungal pathogens kill approximately 1.5 million individuals per year and represent a severe disease burden worldwide. It is estimated over 150 million people have serious fungal disease such as recurrent mucosal infections or life-threatening systemic infections. Disease can ensue from commensal fungi or new infection and involves different fungal morphologies and the expression of virulence factors. Therefore, anti-fungal immunity is complex and requires coordination between multiple facets of the immune system. IL-1 family cytokines are associated with acute and chronic inflammation and are essential for the innate response to infection. Recent research indicates IL-1 cytokines play a key role mediating immunity against different fungal infections. During mucosal disease, IL-1R and IL-36R are required for neutrophil recruitment and protective Th17 responses, but function through different mechanisms. During systemic disease, IL-18 drives protective Th1 responses, while IL-33 promotes Th2 and suppresses Th1 immunity. The IL-1 family represents an attractive anti-fungal immunotherapy target. There is a need for novel anti-fungal therapeutics, as current therapies are ineffective, toxic and encounter resistance, and no anti-fungal vaccine exists. Furthering our understanding of the IL-1 family cytokines and their complex role during fungal infection may aid the development of novel therapies. As such, this review will discuss the role for IL-1 family cytokines in fungal infections.

13.
Crit Rev Microbiol ; 47(1): 91-111, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33482069

RESUMO

Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.


Assuntos
Biofilmes , Candida albicans/fisiologia , Candidíase/microbiologia , Animais , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candidíase/tratamento farmacológico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
14.
Methods Mol Biol ; 2260: 49-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33405031

RESUMO

The epithelial cell is usually the first host cell that interacts with the microbiota present at mucosal surfaces. Although initially thought of as "bystander" cells with barrier function, the epithelial cell is now known to be a sentinel cell in the recognition and discrimination of commensal and pathogenic microorganisms and a key cell in initiating subsequent innate and adaptive immune responses. Here, we describe the main assays utilized in analyzing the activation of epithelial cell signaling (western blotting), transcription factors (TransAm), gene expression (quantitative reverse transcription PCR (qRT-PCR)), cytokine responses (ELISA, Luminex), and damage induction (lactate dehydrogenase (LDH) release). While our laboratory focuses on the epithelial response to Candida pathogens, these assays can be applied universally to analyze the activation of epithelial cells in response to any microbial pathogen.


Assuntos
Western Blotting , Candida/patogenicidade , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Animais , Sobrevivência Celular , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , L-Lactato Desidrogenase/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
15.
Immunology ; 162(1): 11-16, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880925

RESUMO

As our understanding of mycology progresses, the impact of fungal microbes on human health has become increasingly evident. Candida albicans is a common commensal fungus that gives rise to local and systemic infections, particularly in immunocompromised patients where it can result in mortality. However, C. albicans has also been quietly linked with a variety of inflammatory disorders, to which it has traditionally been considered incidental; recent studies may now provide new aspects of these relationships for further consideration. This review provides a novel perspective on the impact of C. albicans and its peptide toxin, candidalysin, on human health, exploring their contributions to pathology within a variety of diseases.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Inflamação/microbiologia , Neoplasias/microbiologia , Animais , Candidíase/microbiologia , Humanos
16.
Trends Cell Biol ; 31(3): 179-196, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33293167

RESUMO

Fungal diseases contribute significantly to morbidity and mortality in humans. Although recent research has improved our understanding of the complex and dynamic interplay that occurs between pathogenic fungi and the human host, much remains to be elucidated concerning the molecular mechanisms that drive fungal pathogenicity and host responses to fungal infections. In recent times, there has been a significant increase in studies investigating the immunological functions of microbial-induced host cell death. In addition, pathogens use many strategies to manipulate host cell death pathways to facilitate their survival and dissemination. This review will focus on the mechanisms of host programmed cell death that occur during opportunistic fungal infections, and explore how cell death pathways may affect immunity towards pathogenic fungi.


Assuntos
Micoses , Piroptose , Apoptose , Morte Celular , Humanos
18.
Cells ; 9(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178483

RESUMO

Host released alarmins and antimicrobial peptides (AMPs) are highly effective as antifungal agents and inducers. Whilst some are expressed constitutively at mucosal tissues, the primary site of many infections, others are elicited in response to pathogens. In the context of Candida albicans, the fungal factors inducing the release of these innate immune molecules are poorly defined. Herein, we identify candidalysin as a potent trigger of several key alarmins and AMPs known to possess potent anti-Candida functions. We also find extracellular ATP to be an important activator of candidalysin-induced epithelial signalling responses, namely epidermal growth factor receptor (EGFR) and MAPK signalling, which mediate downstream innate immunity during oral epithelial infection. The data provide novel mechanistic insight into the induction of multiple key alarmins and AMPs, important for antifungal defences against C. albicans.


Assuntos
Alarminas/metabolismo , Candida albicans/imunologia , Células Epiteliais/metabolismo , Proteínas Fúngicas/uso terapêutico , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Fúngicas/farmacologia , Humanos
19.
Nat Commun ; 10(1): 2297, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127085

RESUMO

Candida albicans is a fungal pathobiont, able to cause epithelial cell damage and immune activation. These functions have been attributed to its secreted toxin, candidalysin, though the molecular mechanisms are poorly understood. Here, we identify epidermal growth factor receptor (EGFR) as a critical component of candidalysin-triggered immune responses. We find that both C. albicans and candidalysin activate human epithelial EGFR receptors and candidalysin-deficient fungal mutants poorly induce EGFR phosphorylation during murine oropharyngeal candidiasis. Furthermore, inhibition of EGFR impairs candidalysin-triggered MAPK signalling and release of neutrophil activating chemokines in vitro, and diminishes neutrophil recruitment, causing significant mortality in an EGFR-inhibited zebrafish swimbladder model of infection. Investigation into the mechanism of EGFR activation revealed the requirement of matrix metalloproteinases (MMPs), EGFR ligands and calcium. We thus identify a PAMP-independent mechanism of immune stimulation and highlight candidalysin and EGFR signalling components as potential targets for prophylactic and therapeutic intervention of mucosal candidiasis.


Assuntos
Candida albicans/imunologia , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Sacos Aéreos/microbiologia , Animais , Candida albicans/genética , Candida albicans/metabolismo , Candidíase/imunologia , Candidíase/microbiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/imunologia , Metaloproteinases da Matriz/imunologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Mucosa/microbiologia , Faringite/imunologia , Faringite/microbiologia , Fosforilação , Peixe-Zebra
20.
Pathogens ; 8(2)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013590

RESUMO

Flexible adaptation to the host environment is a critical trait that underpins the success of numerous microbes. The polymorphic fungus Candida albicans has evolved to persist in the numerous challenging niches of the human body. The interaction of C. albicans with a mucosal surface is an essential prerequisite for fungal colonisation and epitomises the complex interface between microbe and host. C. albicans exhibits numerous adaptations to a healthy host that permit commensal colonisation of mucosal surfaces without provoking an overt immune response that may lead to clearance. Conversely, fungal adaptation to impaired immune fitness at mucosal surfaces enables pathogenic infiltration into underlying tissues, often with devastating consequences. This review will summarise our current understanding of the complex interactions that occur between C. albicans and the mucosal surfaces of the human body.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...