Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Adv Mater ; : e2400627, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724020

RESUMO

Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide-based phase change materials (PCMs) offer great promise due to their non-volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub-micron-sized. To incorporate phase change materials into free-space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non-mechanical, non-volatile transmissive filter based on low-loss PCMs with a 200 µm×200 µm switching area. The device/metafilter can be consistently switched between low- and high-transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free-space reconfigurable optics based on PCMs. This article is protected by copyright. All rights reserved.

3.
Sports (Basel) ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37999427

RESUMO

Aerobic exercise, specifically high-intensity interval exercise (HIIE), and its effects on renal health and filtration (RHF) are not well understood. Several studies support incorporating contemporary biomarkers serum cystatin C (CyC) and urine epidermal growth factor (uEGF) to combat the volatility of serum creatinine (sCr). Using these biomarkers, we examined the acute influences HIIE has on RHF to determine if there is a ceiling effect in healthy populations. The purpose was to determine the influence of an acute bout of HIIE on RHF. Thirty-six participants (n = 22 males; n = 14 females; age 37.6 ± 12.4 years.; BF% 19.2 ± 7.1%; VO2max 41.8 + 7.4 mL/kg/min) completed 30 min of HIIE on a treadmill (80% and 40% of VO2reserve in 3:2 min ratio). Blood and urine samples were obtained under standardized conditions before, 1 h, and 24 h post-exercise. CyC, sCR, uEGF, urine creatinine (uCr), uCr/uEGF ratio, and multiple estimates of glomerular filtration rate (eGFR) Modification of Diet in Renal Disease (MDRD) and CKD-EPI equations were used. The analysis employed paired sample t-tests and repeated measures ANOVAs. CyC, uEGF, uCr, and uCr/uEGF ratio concentrations were not altered between timepoints. sCr increased 1 h post-exercise (p > 0.002) but not at 24 h post-exercise. eGFR decreased in the MDRD and CKD-EPI equations at 1 h (p > 0.012) with no changes at 24 h post-exercise. CyC and sCr/CyC demonstrated no significant changes. CyC and uEGF are not altered by acute HIIE. The results demonstrate a potential ceiling effect in contemporary and traditional biomarkers of RHF, indicating improvements in RHF may be isolated to populations with reduced kidney function.

4.
iScience ; 26(10): 107946, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37854690

RESUMO

Phase Change Materials (PCMs) have demonstrated tremendous potential as a platform for achieving diverse functionalities in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum, ranging from terahertz to visible frequencies. This comprehensive roadmap reviews the material and device aspects of PCMs, and their diverse applications in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum. It discusses various device configurations and optimization techniques, including deep learning-based metasurface design. The integration of PCMs with Photonic Integrated Circuits and advanced electric-driven PCMs are explored. PCMs hold great promise for multifunctional device development, including applications in non-volatile memory, optical data storage, photonics, energy harvesting, biomedical technology, neuromorphic computing, thermal management, and flexible electronics.

5.
Nano Lett ; 23(19): 8898-8906, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37676244

RESUMO

Photonic mechanical sensors offer several advantages over their electronic counterparts, including immunity to electromagnetic interference, increased sensitivity, and measurement accuracy. Exploring flexible mechanical sensors on deformable substrates provides new opportunities for strain-optical coupling operations. Nevertheless, existing flexible photonics strategies often require cumbersome signal collection and analysis with bulky setups, limiting their portability and affordability. To address these challenges, we propose a waveguide-integrated flexible mechanical sensor based on cascaded photonic crystal microcavities with inherent deformation and biaxial tensile state analysis. Leveraging the advanced multiplexing capability of the sensor, for the first time, we successfully demonstrate 2D shape reconstruction and quasi-distributed strain sensing with 110 µm spatial resolution. Our microscale mechanical sensor also exhibits exceptional sensitivity with a detected force level as low as 13.6 µN in real-time measurements. This sensing platform has potential applications in various fields, including biomedical sensing, surgical catheters, aircraft and spacecraft engineering, and robotic photonic skin development.

6.
Light Sci Appl ; 12(1): 189, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528100

RESUMO

Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/µm and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100× improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example.

7.
Pulm Circ ; 13(2): e12247, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37346966

RESUMO

Pulmonary hypertension (PH) is a life-threatening, debilitating disease caused by increased blood pressure in the pulmonary arteries. As patients living in the United States, we have unique insights into the journey from diagnosis and treatment within the US healthcare system and the significant impact that PH has on our quality of life. While there have recently been advances in PH management, there are several areas of PH care which we feel should be reassessed and improved. Commonly, diagnosis is lengthy and convoluted due to the rarity of the disease and limited knowledge of PH in primary care. There are also barriers to obtaining the right treatment and we feel that a more holistic approach to care is needed. Mental health is commonly overlooked and should be an integral part of patient care, as should elements such as nutritional advice, cardiopulmonary rehabilitation, and sexual health. PH patient associations play a key role in providing social, educational, and financial support to patients and caregivers alongside PH research and advocacy. As patients, we feel that we need to advocate for correct diagnosis, timely referral, and optimal treatment, in addition to overcoming the financial and/or administrative hurdles to obtain these. We propose several future goals to help empower patients to play an active, central role in their care and to improve all aspects of PH management. We advocate for further use of the patient voice in research and clinical development programs, including the use of patient-reported outcomes that have been developed with patient input.

8.
Mil Med ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705446

RESUMO

BACKGROUND: The Army Combat Fitness Test (ACFT) is a performance assessment used by the U.S. Army to assess a cadet's strength, endurance, and agility with a series of six events to ensure that cadets are combat ready. Heart rate variability (HRV) is an instrument that measures cardiac autonomic modulation and has been incorporated to predict the performance of athletes in daily training and competition since acute bouts of exercise alter HRV variables. PURPOSE: To assess the applicability of using HRV to predict ACFT score performance outcomes in cadets. METHODS: Fifty army cadets (n = 36 male; n = 14 female; age = 20.60 ± 3.61 years; height = 173.34 ± 10.39 cm; body mass = 76.33 ± 14.68 kg; body fat percentage = 17.58 ± 5.26%) completed the ACFT and reported for HRV assessment. HRV assessment had the participant lay supine for 5 minutes, and traditional time and frequency domain variables were assessed. A Pearson's correlation and multiple linear regressions were run. RESULTS: HRV time and frequency domains were not significantly correlated in linear regression models except the stress index (SI) and the 2-mile run (2MR). The standing power throw and sprint drag carry were significantly correlated with traditional HRV variables. CONCLUSIONS: HRV was not a predictor of ACFT performance for individual events or overall ACFT. The SI presented predictive properties only for 2MR, with no other significant correlations between HRV variables with standing power throw and sprint drag carry. The SI ability to predict 2MR performance outcome via HRV is a promising tool to assess army cadet performance and recovery.

9.
Opt Express ; 30(15): 26534-26543, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236849

RESUMO

Flexible integrated photonics is a rapidly emerging technology with a wide range of possible applications in the fields of flexible optical interconnects, conformal multiplexing sensing, health monitoring, and biotechnology. One major challenge in developing mechanically flexible integrated photonics is the functional component within an integrated photonic circuit with superior performance. In this work, several essential flexible passive devices for such a circuit were designed and fabricated based on a multi-neutral-axis mechanical design and a monolithic integration technique. The propagation loss of the waveguide is calculated to be 4.2 dB/cm. In addition, we demonstrate a microring resonator, waveguide crossing, multimode interferometer (MMI), and Mach-Zehnder interferometer (MZI) for use at 1.55 µm, each exhibiting superior optical and mechanical performance. These results represent a significant step towards further exploring a complete flexible photonic integrated circuit.

10.
Nat Commun ; 13(1): 3915, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798746

RESUMO

The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2 substrates limit operation to wavelengths λ ≲ 4 µm. Here we overcome these challenges with a chalcogenide glass-on-CaF2 PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation to λ = 5.2 µm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up to f = 1 MHz, and a predicted 3-dB bandwidth of f3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35565152

RESUMO

Maximal oxygen consumption (VO2max) has been associated with body fat percentage (%BF) or fat free mass. However, most analyses do not consider total body composition (TBC) as defined by %BF, fat free mass index (FFMI­a height-adjusted measure of muscle mass), visceral adipose tissue, and bone mineral content (BMC). The aim of this study was to determine if TBC predicts cardiorespiratory fitness in healthy adults and if a relationship exists in young and older adults. Sixty healthy individuals (age group 1 (AG1, ≤35 years), n = 35; age group 2 (AG2, >35 years), n = 25) were screened in a cross-sectional study and retrospectively examined. All participants completed a full body DEXA scan and a standardized multistage treadmill test to determine VO2max. A multiple linear regression analysis was performed to examine the relationship between TBC and VO2max. The multiple regression model showed an overall significant effect for TBC (p < 0.001, R2 = 0.282). When analyzed by age group, the regression model of TBC was not significant in young adults (AG1, p = 0.319, R2 = 0.141), but significant in older adults (AG2, p < 0.001, R2 = 0.683). Significant predictors of VO2max in the older cohort were %BF (ß = −0.748, p = 0.001) and BMC (ß = 0.014, p = 0.002). Total body composition predicted VO2max in a small cohort of healthy adults. This study highlights the importance of TBC for cardiovascular health, especially in mid-to later-life individuals.


Assuntos
Aptidão Cardiorrespiratória , Adulto , Idoso , Composição Corporal/fisiologia , Índice de Massa Corporal , Aptidão Cardiorrespiratória/fisiologia , Estudos Transversais , Humanos , Consumo de Oxigênio , Aptidão Física/fisiologia , Projetos Piloto , Estudos Retrospectivos , Adulto Jovem
12.
Biology (Basel) ; 11(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453726

RESUMO

Aerobic exercise elicits a multitude of physiological improvements in both healthy and diseased populations. However, acute changes in renal health and filtration with aerobic exercise remain difficult to quantify by traditional biomarkers to estimate glomerular filtration rate (eGFR). This study aimed to determine if an acute bout of moderate-intensity aerobic exercise transiently improves non-traditional biomarkers when compared to traditional biomarkers of renal health and filtration in individuals without cardiometabolic diseases. Thirty-nine participants (n = 18 men; n = 21 women; age 32.5 + 12.6 yr; height 171.1 + 11.4 cm; weight 78.7 + 15.6 kg; BMI 27.1 + 5.8) completed a single bout of moderate-intensity (50-60% HRR) aerobic exercise. Blood and urine samples were collected and compared before and post-exercise. Serum creatinine, urine epidermal growth factor (uEGF), uEGF/urine creatinine ratio (uEGFR), and cystatin C (CyC) were measured. In addition, eGFR-MDRD and the CKD-epidemiology equations were used to analyze renal clearance. Relative to pre-exercise measures: serum creatinine (p = 0.26), uEGF (p = 0.35), and uEGFR (p = 0.09) remained unchanged, whereas cystatin C (p = 0.00) significantly increased post-exercise. CyC eGFR was the only estimator of renal filtration to significantly change (p = 0.04). In conclusion, CyC is the only biomarker of renal health and filtration to significantly increase after aerobic exercise. Further investigation focused on sampling time and exercise-intensity is needed to solidify the current understanding of renal health and filtration.

13.
Front Med (Lausanne) ; 9: 1039230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590930

RESUMO

Introduction: Hyperuricemia commonly associated with Gout has been proposed as an independent risk factor for Metabolic Syndrome (MetS). Objective: The purpose of the study was to determine if there is a relationship between hyperuricemia and MetS. Methods: An analysis of cross-sectional data was conducted using the 2013-2018 National Health and Nutrition Examination Survey (NHANES) datasets. Sample weights were assigned by NHANES researchers to each participant allowing researchers to generalize results to all non-institutionalized United States (US) civilians. The analysis included 6,432 individuals, which were representative of 94,729,059 US citizens. Results: Pearson's correlations, chi-square tests, and logistic regression equations were calculated to determine the association between hyperuricemia and MetS. In an unadjusted regression analysis, individuals with hyperuricemia (above 7.0 mg/dL in males and 6.0 mg/dL in females) were 3.19 times more likely to have MetS compared to those with normal uric acid (UA) levels. When controlling for various confounding variables those with hyperuricemia were 1.89 and 1.34 times more likely to have MetS than those with normal UA levels in two additional logistic regression models. Conclusion: In this large cross-sectional study, hyperuricemia was found to be associated with MetS. Additional analyses that controlled for various risk factors previously identified as predictive of MetS still demonstrated hyperuricemia independently associated with MetS. The results of this study suggest a need to understand the metabolic pathways of UA more clearly to further explain the contribution to MetS. Additional research should include prospective clinical trials assessing the effects of UA and the control of UA on MetS and concomitant medical outcomes.

15.
Nat Nanotechnol ; 16(6): 661-666, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33875868

RESUMO

Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and non-volatile switching characteristics. Here we report a large-scale, electrically reconfigurable non-volatile metasurface platform based on optical PCMs. The optical PCM alloy used in the devices, Ge2Sb2Se4Te (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss and a large reversible switching volume, enabling notably enhanced light-matter interactions within the active optical PCM medium. Capitalizing on these favourable attributes, we demonstrated quasi-continuously tuneable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.

16.
Nat Commun ; 12(1): 1225, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619270

RESUMO

Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, and efficiency, especially for non-mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning in the full 2π range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling binary switching of metasurfaces between arbitrary phase profiles and propose a new figure-of-merit (FOM) tailored for reconfigurable meta-optics. We implement the approach to realize a high-performance varifocal metalens operating at 5.2 µm wavelength. The reconfigurable metalens features a record large switching contrast ratio of 29.5 dB. We further validate aberration-free and multi-depth imaging using the metalens, which represents a key experimental demonstration of a non-mechanical tunable metalens with diffraction-limited performance.

17.
Opt Express ; 28(21): 31932-31942, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115157

RESUMO

Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. The design of meta-atoms, the fundamental building blocks of metasurfaces, typically relies on trial and error to achieve target electromagnetic responses. This process includes the characterization of an enormous amount of meta-atom designs with varying physical and geometric parameters, which demands huge computational resources. In this paper, a deep learning-based metasurface/meta-atom modeling approach is introduced to significantly reduce the characterization time while maintaining accuracy. Based on a convolutional neural network (CNN) structure, the proposed deep learning network is able to model meta-atoms with nearly freeform 2D patterns and different lattice sizes, material refractive indices and thicknesses. Moreover, the presented approach features the capability of predicting a meta-atom's wide spectrum response in the timescale of milliseconds, attractive for applications necessitating fast on-demand design and optimization of a meta-atom/metasurface.

18.
Nat Commun ; 10(1): 4279, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570710

RESUMO

Optical phase change materials (O-PCMs), a unique group of materials featuring exceptional optical property contrast upon a solid-state phase transition, have found widespread adoption in photonic applications such as switches, routers and reconfigurable meta-optics. Current O-PCMs, such as Ge-Sb-Te (GST), exhibit large contrast of both refractive index (Δn) and optical loss (Δk), simultaneously. The coupling of both optical properties fundamentally limits the performance of many applications. Here we introduce a new class of O-PCMs based on Ge-Sb-Se-Te (GSST) which breaks this traditional coupling. The optimized alloy, Ge2Sb2Se4Te1, combines broadband transparency (1-18.5 µm), large optical contrast (Δn = 2.0), and significantly improved glass forming ability, enabling an entirely new range of infrared and thermal photonic devices. We further demonstrate nonvolatile integrated optical switches with record low loss and large contrast ratio and an electrically-addressed spatial light modulator pixel, thereby validating its promise as a material for scalable nonvolatile photonics.

19.
Opt Lett ; 44(20): 5009-5012, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613250

RESUMO

We demonstrated a class of highly nonlinear hybrid waveguide structures based on infiltration of As2S3 chalcogenide glass into silicon slot waveguides. The nonlinear properties of the hybrid waveguides were precisely quantified via a bidirectional top-hat D-scan method, enabling a direct comparison between properties measured using different device geometries. We experimentally demonstrate hybrid As2S3-Si slot waveguides with a two-photon absorption (TPA) figure of merit exceeding 2 at near infrared wavelengths. These waveguides largely satisfy the critical criterion for efficient nonlinear integrated photonics (FOMTPAwg>1), allowing phase shifts greater than π with minimal overall losses. These results pave the way for efficient and robust ultrafast all-optical devices and circuits in large-scale silicon photonics technology.

20.
Opt Express ; 27(10): 13781-13792, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163837

RESUMO

We report on the design, fabrication and testing of three types of coupling structures for hybrid chalcogenide glass Ge23Sb7S70-Silicon (GeSbS-Si) photonic integrated circuit platforms. The first type is a fully etched GeSbS grating coupler defined directly in the GeSbS film. Coupling losses of 5.3 dB and waveguide-to-waveguide back-reflections of 3.4% were measured at a wavelength of 1553 nm. Hybrid GeSbS-to-Si butt couplers and adiabatic couplers transmitting light between GeSbS and Si single-mode waveguides were further developed. The hybrid butt couplers (HBCs) feature coupling losses of 2.7 dB and 9.2% back-reflection. The hybrid adiabatic couplers (HACs) exhibit coupling losses of 0.7 dB and negligible back-reflection. Both HBCs and HACs have passbands exceeding the 100 nm measurement range of the test setup. GeSbS grating couplers and GeSbS-to-Si waveguide couplers can be co-fabricated in the same process flow, providing, for example, a means to first couple high optical power levels required for nonlinear signal processing directly into GeSbS waveguides and to later transition into Si waveguides after attenuation of the pump. Moreover, GeSbS waveguides and HBC transitions have been fabricated on post-processed silicon photonics chips obtained from a commercially available foundry service, with a previously deposited 2 µm thick top waveguide cladding. This fabrication protocol demonstrates the compatibility of the developed integration scheme with standard silicon photonics technology with a complete back-end-of-line process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...