Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 25(2): 304-313, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484250

RESUMO

Chloramines (NH2Cl, NHCl2, and NCl3) are toxic compounds that can be created during the use of bleach-based disinfectants that contain hypochlorous acid (HOCl) and the hypochlorite ion (OCl-) as their active ingredients. Chloramines can then readily transfer from the aqueous-phase to the gas-phase. Atmospheric chemical ionization mass spectrometry using iodide adduct chemistry (I-CIMS) made observations across two periods (2014 and 2016) at an urban background site on the University of Leicester campus (Leicester, UK). Both monochloramine (NH2Cl) and molecular chlorine (Cl2) were detected and positively identified from calibrated mass spectra during both sampling periods and to our knowledge, this is the first detection of NH2Cl outdoors. Mixing ratios of NH2Cl reached up to 2.2 and 4.0 parts per billion by volume (ppbv), with median mixing ratios of 30 and 120 parts per trillion by volume (pptv) during the 2014 and 2016 sampling periods, respectively. Levels of Cl2 were observed to reach up to 220 and 320 pptv. Analysis of the NH2Cl and Cl2 data pointed to the same local source, a nearby indoor sports complex with a swimming pool and a cleaning product storage shed. No appreciable levels of NHCl2 and NCl3 were observed outdoors, suggesting the indoor pool was not likely to be the primary source of the observed ambient chloramines, as prior measurements made in indoor pool atmospheres indicate that NCl3 would be expected to dominate. Instead, these observations point to indoor cleaning and/or cleaning product emissions as the probable source of NH2Cl and Cl2 where the measured levels provide indirect evidence for substantial amounts transported from indoors to outdoors. Our upper estimate for total NH2Cl emissions from the University of Leicester indoor sports complexes scaled for similar sports complexes across the UK is 3.4 × 105 ± 1.1 × 105 µg h-1 and 0.0017 ± 0.00034 Gg yr-1, respectively. The Cl-equivalent emissions in HCl are only an order of magnitude less to those from hazardous waste incineration and iron and steel sinter production in the UK National Atmospheric Emissions Inventory (NAEI).


Assuntos
Desinfetantes , Purificação da Água , Cloro , Cloraminas/química , Desinfetantes/química , Ácido Hipocloroso/química
2.
BMC Biotechnol ; 8: 86, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19014508

RESUMO

BACKGROUND: Array-based comparative genomic hybridization (CGH) and gene expression profiling have become vital techniques for identifying molecular defects underlying genetic diseases. Regardless of the microarray platform, cyanine dyes (Cy3 and Cy5) are one of the most widely used fluorescent dye pairs for microarray analysis owing to their brightness and ease of incorporation, enabling high level of assay sensitivity. However, combining both dyes on arrays can become problematic during summer months when ozone levels rise to near 25 parts per billion (ppb). Under such conditions, Cy5 is known to rapidly degrade leading to loss of signal from either "homebrew" or commercial arrays. Cy5 can also suffer disproportionately from dye photobleaching resulting in distortion of (Cy5/Cy3) ratios used in copy number analysis. Our laboratory has been active in fluorescent dye research to find a suitable alternative to Cy5 that is stable to ozone and resistant to photo-bleaching. Here, we report on the development of such a dye, called HyPer5, and describe its' exceptional ozone and photostable properties on microarrays. RESULTS: Our results show HyPer5 signal to be stable to high ozone levels. Repeated exposure of mouse arrays hybridized with HyPer5-labeled cDNA to 300 ppb ozone at 5, 10 and 15 minute intervals resulted in no signal loss from the dye. In comparison, Cy5 arrays showed a dramatic 80% decrease in total signal during the same interval. Photobleaching experiments show HyPer5 to be resistant to light induced damage with 3- fold improvement in dye stability over Cy5. In high resolution array CGH experiments, HyPer5 is demonstrated to detect chromosomal aberrations at loci 2p21-16.3 and 15q26.3-26.2 from three patient sample using bacterial artificial chromosome (BAC) arrays. The photostability of HyPer5 is further documented by repeat array scanning without loss of detection. Additionally, HyPer5 arrays are shown to preserve sensitivity and data quality from gene expression experiments. CONCLUSION: HyPer5 is a red fluorescent dye that behaves functionally similar to Cy5 except in stability to ozone and light. HyPer5 is demonstrated to be resistant to ozone at up to 300 ppb, levels significantly higher than commonly observed during summer months. Consequently, HyPer5 dye can be used in parallel with Cy3 under any environmental conditions in array experiments.


Assuntos
Carbocianinas/química , Hibridização Genômica Comparativa/métodos , Corantes Fluorescentes/química , Luz , Ozônio/química , Carbocianinas/efeitos da radiação , DNA Complementar , Corantes Fluorescentes/efeitos da radiação , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fotodegradação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA