Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36205399

RESUMO

Mechanosensitive (MS) ion channels are an evolutionarily conserved way for cells to sense mechanical forces and transduce them into ionic signals. The channel properties of Arabidopsis thaliana MscS-Like (MSL)10 have been well studied, but how MSL10 signals remains largely unknown. To uncover signaling partners of MSL10, we employed a proteomic screen and a forward genetic screen; both unexpectedly implicated endoplasmic reticulum-plasma membrane contact sites (EPCSs) in MSL10 function. The proteomic screen revealed that MSL10 associates with multiple proteins associated with EPCSs. Of these, only VAMP-associated proteins (VAP)27-1 and VAP27-3 interacted directly with MSL10. The forward genetic screen, for suppressors of a gain-of-function MSL10 allele (msl10-3G, MSL10S640L), identified mutations in the synaptotagmin (SYT)5 and SYT7 genes. We also found that EPCSs were expanded in leaves of msl10-3G plants compared to the wild type. Taken together, these results indicate that MSL10 associates and functions with EPCS proteins, providing a new cell-level framework for understanding MSL10 signaling. In addition, placing a mechanosensory protein at EPCSs provides new insight into the function and regulation of this type of subcellular compartment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteômica , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(30): e2206433119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858457

RESUMO

Some of the most spectacular examples of botanical carnivory-in which predator plants catch and digest animals presumably to supplement the nutrient-poor soils in which they grow-occur within the Droseraceae family. For example, sundews of the genus Drosera have evolved leaf movements and enzyme secretion to facilitate prey digestion. The molecular underpinnings of this behavior remain largely unknown; however, evidence suggests that prey-induced electrical impulses are correlated with movement and production of the defense hormone jasmonic acid (JA), which may alter gene expression. In noncarnivorous plants, JA is linked to electrical activity via changes in cytoplasmic Ca2+. Here, we find that dynamic Ca2+ changes also occur in sundew (Drosera spatulata) leaves responding to prey-associated mechanical and chemical stimuli. Furthermore, inhibition of these Ca2+ changes reduced expression of JA target genes and leaf movements following chemical feeding. Our results are consistent with the presence of a conserved Ca2+-dependent JA signaling pathway in the sundew feeding response and provide further credence to the defensive origin of plant carnivory.


Assuntos
Sinalização do Cálcio , Cálcio , Planta Carnívora , Drosera , Animais , Cálcio/metabolismo , Planta Carnívora/metabolismo , Ciclopentanos/metabolismo , Drosera/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo
3.
Plant Signal Behav ; 17(1): 2015893, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34951344

RESUMO

The PIEZO protein family was first described in animals where these mechanosensitive calcium channels perform numerous essential functions, including the perception of light touch, shear, and compressive forces. PIEZO homologs are present in most eukaryotic lineages and recently we reported that two PIEZO homologs from moss Physcomitrium patens localize to the vacuolar membrane and modulate its morphology in tip-growing caulonemal cells. Here we show that predicted structures of both PpPIEZO1 and PpPIEZO2 are very similar to that of mouse Piezo2. Furthermore, we show that both moss PIEZO genes are ubiquitously expressed in moss vegetative tissues and that they are not required for normal vacuolar pH or intracellular osmotic potential. These results suggest that moss PIEZO proteins are widely expressed mechanosensory calcium channels that serve a signaling rather than maintenance role in vacuoles.


Assuntos
Bryopsida , Vacúolos , Animais , Bryopsida/genética , Bryopsida/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanotransdução Celular , Camundongos , Transdução de Sinais , Vacúolos/metabolismo
4.
Science ; 373(6554): 586-590, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326243

RESUMO

In animals, PIEZOs are plasma membrane-localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the moss Physcomitrium patens and the flowering plant Arabidopsis thaliana PpPIEZO1 and PpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. Both PpPIEZO1 and PpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission. Arabidopsis PIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Bryopsida/metabolismo , Canais Iônicos/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/ultraestrutura , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Bryopsida/crescimento & desenvolvimento , Bryopsida/ultraestrutura , Cálcio/metabolismo , Sinalização do Cálcio , Citoplasma/metabolismo , Membranas Intracelulares/metabolismo , Canais Iônicos/genética , Proteínas de Plantas/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Tubo Polínico/ultraestrutura , Vacúolos/metabolismo
5.
Plant Direct ; 3(3): e00124, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31245767

RESUMO

Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between three Mechanosensitive channel of Small conductance-Like (MSL) proteins from Arabidopsis thaliana. MSL proteins are Arabidopsis homologs of the bacterial Mechanosensitive channel of Small conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock. MSL1 localizes to the inner mitochondrial membrane, while MSL2 and MSL3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion in MSL1, both in wild type and in msl2 msl3 mutant backgrounds. msl1 single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling in msl2 msl3 double mutants was exacerbated in the msl1 msl2 msl3 triple mutant. However, the introduction of the msl1 lesion into the msl2 msl3 mutant background suppressed other msl2 msl3 mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version of MSL1. In yeast-based interaction studies, MSL1 interacted with itself, but not with MSL2 or MSL3. These results establish that the abnormalities observed in msl2 msl3 double mutants is partially dependent on the presence of functional MSL1 and suggest a possible role for communication between plastid and mitochondria in seedling development.

6.
Mol Plant Microbe Interact ; 32(6): 654-672, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30520677

RESUMO

Insect galls are highly specialized structures arising from atypical development of plant tissue induced by insects. Galls provide the insect enhanced nutrition and protection against natural enemies and environmental stresses. Galls are essentially plant organs formed by an intimate biochemical interaction between the gall-inducing insect and its host plant. Because galls are plant organs, their development is likely to be governed by phytohormones involved in normal organogenesis. We characterized concentrations of both growth and defensive phytohormones in ungalled control leaves and galls induced by the aphid Pemphigus betae on narrowleaf cottonwood Populus angustifolia that differ genotypically in resistance to this insect. We found that susceptible trees differed from resistant trees in constitutive concentrations of both growth and defense phytohormones. Susceptible trees were characterized by significantly higher constitutive cytokinin concentrations in leaves, significantly greater ability of aphids to elicit cytokinin increases, and significantly lower constitutive defense phytohormone concentrations than observed in resistant trees. Phytohormone concentrations in both constitutive and induced responses in galled leaves exhibited high broad-sense heritability that, respectively, ranged from 0.39 to 0.93 and from 0.28 to 0.66, suggesting that selection can act upon these traits and that they might vary across the landscape. Increased cytokinin concentrations may facilitate forming strong photosynthate sinks in the galls, a requirement for galling insect success. By characterizing for the first time the changes in 15 phytohormones belonging to five different classes, this study offers a better overview of the signaling alteration occurring in galls that has likely been important for their ecology and evolution. Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Afídeos , Genótipo , Interações Hospedeiro-Parasita , Reguladores de Crescimento de Plantas , Tumores de Planta , Populus , Animais , Afídeos/fisiologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/genética , Populus/genética , Populus/parasitologia
7.
Protoplasma ; 254(1): 203-216, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26739691

RESUMO

An insect-induced gall is a highly specialized structure resulting from atypical development of plant tissue induced by a reaction to the presence and activity of an insect. The insect induces a differentiation of tissues with features and functions of an ectopic organ, providing nutrition and protection to the galling insect from natural enemies and environmental stresses. In this anatomical and cytological study, we characterized how the gall-inducing aphid Pemphigus betae reshapes the leaf morphology of the narrow-leaf cottonwood Populus angustifolia to form a leaf fold gall. Young galls displayed a bend on one side of the midvein toward the center of the leaf and back to create a fold on the abaxial side of the leaf. This fold was formed abaxially by periclinal and anticlinal divisions, effectively eliminating intercellular spaces from the spongy parenchyma. Galls at this stage exhibited both cell hypertrophy and tissue hyperplasia. Cells on the adaxial surface were more numerous and smaller than cells near the abaxial surface were, creating the large fold that surrounds the insect. Mesophyll cells exhibited some features typical of nutritive cells induced by other galling insects, including conspicuous nucleolus, reduced and fragmented vacuole, smaller and degraded chloroplasts, and dense cytoplasm compared to ungalled tissue. Even though aphids feed on the contents of phloem and do not directly consume the gall tissue, they induce changes in the plant vascular system, which lead to nutrient accumulation to support the growing aphid numbers in mature galls.


Assuntos
Afídeos/fisiologia , Folhas de Planta/anatomia & histologia , Tumores de Planta/parasitologia , Populus/parasitologia , Animais , Contagem de Células , Estágios do Ciclo de Vida , Organelas/metabolismo , Folhas de Planta/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...