Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Environ Health Perspect ; 132(3): 37005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498338

RESUMO

BACKGROUND: Understanding the variability across the human population with respect to toxicodynamic responses after exposure to chemicals, such as environmental toxicants or drugs, is essential to define safety factors for risk assessment to protect the entire population. Activation of cellular stress response pathways are early adverse outcome pathway (AOP) key events of chemical-induced toxicity and would elucidate the estimation of population variability of toxicodynamic responses. OBJECTIVES: We aimed to map the variability in cellular stress response activation in a large panel of primary human hepatocyte (PHH) donors to aid in the quantification of toxicodynamic interindividual variability to derive safety uncertainty factors. METHODS: High-throughput transcriptomics of over 8,000 samples in total was performed covering a panel of 50 individual PHH donors upon 8 to 24 h exposure to broad concentration ranges of four different toxicological relevant stimuli: tunicamycin for the unfolded protein response (UPR), diethyl maleate for the oxidative stress response (OSR), cisplatin for the DNA damage response (DDR), and tumor necrosis factor alpha (TNFα) for NF-κB signaling. Using a population mixed-effect framework, the distribution of benchmark concentrations (BMCs) and maximum fold change were modeled to evaluate the influence of PHH donor panel size on the correct estimation of interindividual variability for the various stimuli. RESULTS: Transcriptome mapping allowed the investigation of the interindividual variability in concentration-dependent stress response activation, where the average of BMCs had a maximum difference of 864-, 13-, 13-, and 259-fold between different PHHs for UPR, OSR, DDR, and NF-κB signaling-related genes, respectively. Population modeling revealed that small PHH panel sizes systematically underestimated the variance and gave low probabilities in estimating the correct human population variance. Estimated toxicodynamic variability factors of stress response activation in PHHs based on this dataset ranged between 1.6 and 6.3. DISCUSSION: Overall, by combining high-throughput transcriptomics and population modeling, improved understanding of interindividual variability in chemical-induced activation of toxicity relevant stress pathways across the human population using a large panel of plated cryopreserved PHHs was established, thereby contributing toward increasing the confidence of in vitro-based prediction of adverse responses, in particular hepatotoxicity. https://doi.org/10.1289/EHP11891.


Assuntos
Perfilação da Expressão Gênica , Hepatócitos , Humanos , Transcriptoma , Estresse Oxidativo
2.
Toxicol In Vitro ; 96: 105763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142784

RESUMO

In vitro assays remain relatively new in exploring human relevance of liver, in particular nuclear receptor-mediated perturbations of the hypothalamus-pituitary-thyroid axis seen in rodents, mainly in the rat. Consistent with in vivo data, we confirm that thyroid hormone thyroxine metabolism was 9 times higher in primary rat hepatocytes (PRH) than in primary human hepatocytes (PHH) cultured in a 2D sandwich (2Dsw) configuration. In addition, thyroxine glucuronide (T4-G) was by far the major metabolite formed in both species (99.1% in PRH and 69.7% in PHH) followed by thyroxine sulfate (T4-S, 0.7% in PRH and 18.1% in PHH) and triiodothyronine/reverse triiodothyronine (T3/rT3, 0.2% in PRH and 12.2% in PHH). After a 7-day daily exposure to orphan receptor-mediated liver inducers, T4 metabolism was strongly increased in PRH, almost exclusively through increased T4-G formation. These results were consistent with the inductions of glucuronosyltransferase Ugt2b1 and canalicular transporter Mrp2. PHH also responded to activation of the three nuclear receptors, with mainly induction of glucuronosyltransferase UGT1A1 and canalicular transporter MRP2. Despite this, T4 disappearance rate and secreted T4 metabolites were only slightly increased in PHH. Overall, our data highlight that cryopreserved hepatocytes in 2Dsw culture allowing long-term exposure and species comparison are of major interest in improving liver-mediated human safety assessment.


Assuntos
Tiroxina , Tri-Iodotironina , Humanos , Ratos , Animais , Tiroxina/metabolismo , Ratos Wistar , Tri-Iodotironina/farmacologia , Tri-Iodotironina Reversa/metabolismo , Hepatócitos/metabolismo , Glucuronosiltransferase/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686053

RESUMO

In contrast to genotoxic carcinogens, there are currently no internationally agreed upon regulatory tools for identifying non-genotoxic carcinogens of human relevance. The rodent cancer bioassay is only used in certain regulatory sectors and is criticized for its limited predictive power for human cancer risk. Cancer is due to genetic errors occurring in single cells. The risk of cancer is higher when there is an increase in the number of errors per replication (genotoxic agents) or in the number of replications (cell proliferation-inducing agents). The default regulatory approach for genotoxic agents whereby no threshold is set is reasonably conservative. However, non-genotoxic carcinogens cannot be regulated in the same way since increased cell proliferation has a clear threshold. An integrated approach for the testing and assessment (IATA) of non-genotoxic carcinogens is under development at the OECD, considering learnings from the regulatory assessment of data-rich substances such as agrochemicals. The aim is to achieve an endorsed IATA that predicts human cancer better than the rodent cancer bioassay, using methodologies that equally or better protect human health and are superior from the view of animal welfare/efficiency. This paper describes the technical opportunities available to assess cell proliferation as the central gateway of an IATA for non-genotoxic carcinogenicity.


Assuntos
Carcinogênese , Carcinógenos , Animais , Humanos , Carcinógenos/toxicidade , Agroquímicos , Bioensaio , Proliferação de Células
4.
Arch Toxicol ; 97(4): 991-999, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36800004

RESUMO

The mode of action (MoA) of the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides in mammals is well described and is generally accepted to be due to a build-up of excess systemic tyrosine which is associated with the range of adverse effects reported in laboratory animals. What is less well accepted is the basis for the marked difference in the effects of HPPD inhibitors that has been observed across experimental species and humans, where some species show significant toxicities whereas in other species exposure causes few effects. The activity of the catabolic enzyme tyrosine aminotransferase (TAT) varies across species including humans and it is hypothesized that this primarily accounts for the different levels of tyrosinemia observed between species and leads to the subsequent differences in toxicity. The previously reported activities of TAT in different species showed large variation, were inconsistent, have methodological uncertainties and could lead to a reasonable challenge to the scientific basis for the species difference in response. To provide clarity, a new method was developed for the simultaneous and systematic measurement of TAT in vitro using robust methodologies in a range of mammalian species including human. The results obtained showed general correlation between high TAT activity and low in vivo toxicity when using a model based on hepatic cytosol and a very convincing correlation when using a primary hepatocyte model. These data fully support the role of TAT in explaining the species differences in toxicity. Moreover, this information should give greater confidence in selecting the most appropriate animal model (the mouse) for human health risk assessment and for key classification and labeling decision-making.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Humanos , Animais , Camundongos , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/farmacologia , Especificidade da Espécie , Tirosina/farmacologia , Modelos Animais , Fígado , Inibidores Enzimáticos/farmacologia , Herbicidas/toxicidade , Mamíferos/metabolismo
5.
J Appl Toxicol ; 43(6): 828-844, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36549901

RESUMO

The fungicide boscalid induces thyroid histopathological and hormone effects in the rat, secondary to liver enzyme induction. To assess the human relevance of liver enzyme induction presumably leading to thyroid hormone disruption, a species comparative in vitro study on T4-glucuronidation was conducted. Currently, no guidelines how to evaluate Phase II induction are in place. Therefore, we investigated the optimal conditions to evaluate Phase I and Phase II induction potential of boscalid in primary rat (PRH) and human (PHH) hepatocytes. Endpoints included mRNA gene expression and enzyme activities (cytochrome P450 isozymes [CYPs] and uridine diphosphate-glucuronosyltransferases [UGTs]), measured after 3 (D3) and 7 (D7) days of exposure to reference compounds and to 5, 10, and 20 µM boscalid, focusing on T4-glucuronidation. Basal CYP activities and T4 glucuronidation were similar or higher on D7 than D3. The highest induction responses of CYPs were on D3, whereas UGT induction and T4-glucuronidation increases were highest on D7. Boscalid induced CYP1A, CYP2B, and CYP3A mRNA and/or increased related activities in PRH and PHH. Species differences in the induction pattern of UGT genes by reference inducers (ß-naphthoflavone [BNF], 5-pregnen-3ß-ol-20-one-16α-carbonitirile [PCN], rifampicin [RIF], and phenobarbital [PB]) and boscalid were seen: UGT1A1, UGT1A3, and UGT1A9 were predominantly induced in PHH, while UGT2B1 was predominantly induced in PRH. Basal activity levels for T4-glucuronidation were very low in humans and an order of magnitude higher in rat, for this reason increases in activities were assessed as delta activity to the control. Significant increases in T4-glucuronidation occurred with boscalid in rat but not in human hepatocytes.


Assuntos
Microssomos Hepáticos , Tiroxina , Ratos , Humanos , Animais , Tiroxina/metabolismo , Microssomos Hepáticos/metabolismo , Hepatócitos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , RNA Mensageiro/genética , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Indução Enzimática
6.
FEBS Open Bio ; 12(5): 937-958, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243817

RESUMO

The de novo lipogenesis (DNL) pathway has been identified as a regulator of cancer progression and aggressiveness. Downregulation of key lipogenesis enzymes has been shown to activate apoptosis in cancerous cells. Epigallocatechin gallate (EGCG) inhibits cancer cell proliferation without causing cytotoxicity in healthy cells. The present study aimed to investigate the effects of EGCG on the promotion of apoptosis associated with the DNL pathway inhibition in cancer cells, both in vitro and in vivo. We observed that two colorectal cancer cell lines (HCT116 and HT-29) had a higher cytotoxic response to EGCG treatment than hepatocellular carcinoma cells, including HepG2 and HuH-7. EGCG treatment decreased cell viability and increased mitochondrial damage-triggered apoptosis in both HCT116 and HT-29 cancer cells. Additionally, we treated mice transplanted with HCT116 cells with 30 or 50 mg·kg-1 EGCG for 7 days to evaluate the apoptotic effects of EGCG treatment in a xenograft mouse model of cancer. We observed a decrease in intracellular fatty acid levels, which suggested that EGCG-induced apoptosis was associated with a decrease in fatty acid levels in cancer. Suppression of ATP synthesis by EGCG indicated that cell death induction in cancer cells could be mediated by shared components of the DNL and energy metabolism pathways. In addition, EGCG-induced apoptosis suppressed the expression of the phosphorylation protein kinase B and extracellular signal-regulated kinase 1/2 signaling proteins in tumors from xenografted mice. Cytotoxic effects in unaffected organs and tissues of the mouse xenograft model were absent upon EGCG treatment.


Assuntos
Catequina , Neoplasias Colorretais , Animais , Apoptose , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Ácidos Graxos , Humanos , Lipogênese , Camundongos
7.
Toxicol Appl Pharmacol ; 435: 115831, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922950

RESUMO

Nicofluprole is a novel insecticide of the phenylpyrazole class conferring selective antagonistic activity on insect GABA receptors. After repeated daily dietary administration to Wistar rats for 28/90 days, Nicofluprole induced increases in thyroid (and liver) weight, associated with histopathology changes. Nicofluprole did not inhibit thyroid peroxydase nor sodium/iodide symporter, two key players in the biosynthesis of thyroid hormones, indicating the absence of a direct thyroid effect. The results seen in rats suggested a mode of action of Nicofluprole driven by the molecular initiating event of CAR/PXR nuclear receptor activation in livers, with key events of increases in liver weight and hypertrophy, decreasing circulatory thyroid hormones, a compensatory increase in TSH release and follicular cell hypertrophy. To explore the relevance of these changes to humans, well established in vitro rat and human sandwich-cultured hepatocytes were exposed to Nicofluprole up to 7 days. A concentration-dependent CYP3A induction (PXR-activation), an increase in T4-glucuronoconjugation accompanied by UGT1A/2B inductions was observed in rat but not in human hepatocytes. The inductions seen with Nicofluprole in rat (in vivo and in vitro in hepatocytes) that were absent in human hepatocytes represent another example of species-selectivity of nuclear CAR/PXR receptor activators. Importantly, the different pattern observed in rat and human models demonstrate that Nicofluprole-related thyroid effects observed in the rat are with no human relevance.


Assuntos
Disruptores Endócrinos/toxicidade , Inseticidas/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Tamanho Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Iodeto Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Especificidade da Espécie , Simportadores/metabolismo , Glândula Tireoide/patologia , Hormônios Tireóideos/sangue , Tireotropina/sangue
8.
J Pharmacol Exp Ther ; 379(1): 20-32, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349015

RESUMO

Bosentan, a well-known cholestatic agent, was not identified as cholestatic at concentrations up to 200 µM based on the drug-induced cholestasis (DIC) index value, determined in a sandwich-cultured human hepatocyte (SCHH)-based DIC assay. To obtain further quantitative insights into the effects of bosentan on cellular bile salt handling by human hepatocytes, the present study determined the effect of 2.5-25 µM bosentan on endogenous bile salt levels and on the disposition of 10 µM chenodeoxycholic acid (CDCA) added to the medium in SCHHs. Bosentan reduced intracellular as well as extracellular concentrations of both endogenous glycochenodeoxycholic acid (GCDCA) and glycocholic acid in a concentration-dependent manner. When exposed to 10 µM CDCA, bosentan caused a shift from canalicular efflux to sinusoidal efflux of GCDCA. CDCA levels were not affected. Our mechanistic model confirmed the inhibitory effect of bosentan on canalicular GCDCA clearance. Moreover, our results in SCHHs also indicated reduced GCDCA formation. We confirmed the direct inhibitory effect of bosentan on CDCA conjugation with glycine in incubations with liver S9 fraction. SIGNIFICANCE STATEMENT: Bosentan was evaluated at therapeutically relevant concentrations (2.5-25 µM) in sandwich-cultured human hepatocytes. It altered bile salt disposition and inhibited canalicular secretion of glycochenodeoxycholic acid (GCDCA). Within 24 hours, bosentan caused a shift from canalicular to sinusoidal efflux of GCDCA. These results also indicated reduced GCDCA formation. This study confirmed a direct effect of bosentan on chenodeoxycholic acid conjugation with glycine in liver S9 fraction.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Bosentana/metabolismo , Bosentana/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Células Cultivadas , Meios de Cultura/metabolismo , Meios de Cultura/farmacologia , Relação Dose-Resposta a Droga , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Humanos
9.
Toxicol In Vitro ; 73: 105107, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33545341

RESUMO

Various adaptive cellular stress response pathways are critical in the pathophysiology of liver disease and drug-induced liver injury. Human-induced pluripotent stem cell (hiPSC)-derived hepatocyte-like cells (HLCs) provide a promising tool to study cellular stress response pathways, but in this context there is limited insight on how HLCs compare to other in vitro liver models. Here, we systematically compared the transcriptomic profiles upon chemical activation in HLCs, hiPSC, primary human hepatocytes (PHH) and HepG2 liver cancer cells. We used targeted RNA-sequencing to map concentration transcriptional response using benchmark concentration modeling for the various stress responses in the different test systems. We found that HLCs are very sensitive towards oxidative stress and inflammation conditions as corresponding genes were activated at over 3 fold lower concentrations of the corresponding pathway inducing compounds as compared to PHH. PHH were the most sensitive model when studying UPR related effects. Due to the non-proliferative nature of PHH and HLCs, these do not pose a good/sensitive model to pick up DNA damage responses, while hiPSC and HepG2 were more sensitive in these conditions. We envision that this study contributes to a better understanding on how HLCs can contribute to the assessment of cell physiological stress response activation to predict hepatotoxic events.


Assuntos
Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasias Hepáticas/genética , Estresse Oxidativo/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Hep G2 , Humanos , Fígado/citologia , Masculino
10.
Bioinform Biol Insights ; 14: 1177932220952742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088175

RESUMO

The TempO-Seq S1500+ platform(s), now available for human, mouse, rat, and zebrafish, measures a discrete number of genes that are representative of biological and pathway co-regulation across the entire genome in a given species. While measurement of these genes alone provides a direct assessment of gene expression activity, extrapolating expression values to the whole transcriptome (~26 000 genes in humans) can estimate measurements of non-measured genes of interest and increases the power of pathway analysis algorithms by using a larger background gene expression space. Here, we use data from primary hepatocytes of 54 donors that were treated with the endoplasmic reticulum (ER) stress inducer tunicamycin and then measured on the human S1500+ platform containing ~3000 representative genes. Measurements for the S1500+ genes were then used to extrapolate expression values for the remaining human transcriptome. As a case study of the improved downstream analysis achieved by extrapolation, the "measured only" and "whole transcriptome" (measured + extrapolated) gene sets were compared. Extrapolation increased the number of significant genes by 49%, bringing to the forefront many that are known to be associated with tunicamycin exposure. The extrapolation procedure also correctly identified established tunicamycin-related functional pathways reflected by coordinated changes in interrelated genes while maintaining the sample variability observed from the "measured only" genes. Extrapolation improved the gene- and pathway-level biological interpretations for a variety of downstream applications, including differential expression analysis, gene set enrichment pathway analysis, DAVID keyword analysis, Ingenuity Pathway Analysis, and NextBio correlated compound analysis. The extrapolated data highlight the role of metabolism/metabolic pathways, the ER, immune response, and the unfolded protein response, each of which are key activities associated with tunicamycin exposure that were unrepresented or underrepresented in one or more of the analyses of the original "measured only" dataset. Furthermore, the inclusion of the extrapolated genes raised "tunicamycin" from third to first upstream regulator in Ingenuity Pathway Analysis and from sixth to second most correlated compound in NextBio analysis. Therefore, our case study suggests an approach to extend and enhance data from the S1500+ platform for improved insight into biological mechanisms and functional outcomes of diseases, drugs, and other perturbations.

11.
Regul Toxicol Pharmacol ; 117: 104758, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798612

RESUMO

Benfluralin, an herbicide of the dinitroaniline class used in weed control, was first registered in the United States in 1970. Increased incidence of liver tumors was observed in the 2 year dietary carcinogenicity studies. A review of the toxicology database provides evidence that the mode of action (MOA) of benfluralin responsible for hepatocellular adenoma and carcinoma in rodents depends on activation of the constitutive androstane (CAR)/pregnane X (PXR) receptors, that triggers enzyme induction and altered gene expression leading to hepatocyte proliferation. After prolonged exposures at high dose levels, altered hepatic foci and liver tumors are observed. This hepatocarcinogenic MOA has been described in rodents following long-term dietary exposures to other CAR/PXR activator chemicals, such as phenobarbital, and is generally considered as non-relevant in humans due to differences between human and rodent responses. We analyzed the existing and newly acquired toxicology data to establish that the hepatocarcinogenic MOA of benfluralin in rodents includes the same key events previously described in the rodent MOA of phenobarbital. A weight of evidence approach was taken to establish temporal and dose-related concordance of the causal key events supporting the conclusion that rodent liver carcinogenicity of benfluralin is unlikely to be relevant for human cancer risk.


Assuntos
Neoplasias Hepáticas/induzido quimicamente , Testes de Mutagenicidade/métodos , Toluidinas/toxicidade , Testes de Toxicidade Crônica/métodos , Testes de Toxicidade Subcrônica/métodos , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Ratos Transgênicos , Medição de Risco , Roedores , Toluidinas/administração & dosagem
12.
Regul Toxicol Pharmacol ; 117: 104736, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798613

RESUMO

Benfluralin is an herbicide of the dinitroaniline class used to control grasses and weeds. In a 2 year dietary study in rats, benfluralin increased incidences of thyroid follicular adenoma and carcinoma at high dietary concentrations (≥2500 ppm). The benfluralin toxicology database suggests the mode of action (MOA) is initiated by induction of liver metabolizing enzymes, particularly thyroid hormone specific UGTs, a major pathway for T4 clearance in rats. As reported with phenobarbital, this effect triggers negative feedback regulation, increasing thyroid stimulating hormone (TSH) release into circulating blood. When sustained over time, this leads to thyroid changes such as follicular hypertrophy, hyperplasia and thyroid follicular tumors with chronic exposures. The described MOA was previously established in rat studies with various chemical activators of xenobiotic receptors in the liver. It is generally considered as non-relevant in humans, due to differences between humans and rats in T4 turnover and susceptibility to this carcinogenic MOA. A structured methodology based on the IPCS/MOA/Human Relevance framework was used in the evaluation of available benfluralin data, and the conclusion was determined that the carcinogenic potential of benfluralin in the thyroid is not relevant in humans.


Assuntos
Testes de Mutagenicidade/métodos , Neoplasias da Glândula Tireoide/sangue , Neoplasias da Glândula Tireoide/induzido quimicamente , Toluidinas/toxicidade , Testes de Toxicidade Subcrônica/métodos , Animais , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Ratos , Ratos Endogâmicos F344 , Hormônios Tireóideos/sangue , Neoplasias da Glândula Tireoide/patologia , Xenopus laevis
13.
Cells ; 9(4)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295224

RESUMO

Non-alcoholic fatty liver disease affects approximately one billion adults worldwide. Non-alcoholic steatohepatitis (NASH) is a progressive disease and underlies the advancement to liver fibrosis, cirrhosis, and hepatocellular carcinoma, for which there are no FDA-approved drug therapies. We developed a hetero-cellular spheroid system comprised of primary human hepatocytes (PHH) co-cultured with crude fractions of primary human liver non-parenchymal cells (NPC) from several matched or non-matched donors, to identify phenotypes with utility in investigating NASH pathogenesis and drug screening. Co-culture spheroids displayed stable expression of hepatocyte markers (albumin, CYP3A4) with the integration of stellate (vimentin, PDGFRß), endothelial (vWF, PECAM1), and CD68-positive cells. Several co-culture spheroids developed a fibrotic phenotype either spontaneously, primarily observed in PNPLA3 mutant donors, or after challenge with free fatty acids (FFA), as determined by COL1A1 and αSMA expression. This phenotype, as well as TGFß1 expression, was attenuated with an ALK5 inhibitor. Furthermore, CYP2E1, which has a strong pro-oxidant effect, was induced by NPCs and FFA. This system was used to evaluate the effects of anti-NASH drug candidates, which inhibited fibrillary deposition following 7 days of exposure. In conclusion, we suggest that this system is suitable for the evaluation of NASH pathogenesis and screening of anti-NASH drug candidates.


Assuntos
Cirrose Hepática/etiologia , Cirrose Hepática/terapia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/terapia , Esferoides Celulares/fisiologia , Humanos , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia
14.
Toxicol In Vitro ; 60: 212-228, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31158489

RESUMO

CYP enzyme induction is a sensitive biomarker for phenotypic metabolic competence of in vitro test systems; it is a key event associated with thyroid disruption, and a biomarker for toxicologically relevant nuclear receptor-mediated pathways. This paper summarises the results of a multi-laboratory validation study of two in vitro methods that assess the potential of chemicals to induce cytochrome P450 (CYP) enzyme activity, in particular CYP1A2, CYP2B6, and CYP3A4. The methods are based on the use of cryopreserved primary human hepatocytes (PHH) and human HepaRG cells. The validation study was coordinated by the European Union Reference Laboratory for Alternatives to Animal Testing of the European Commission's Joint Research Centre and involved a ring trial among six laboratories. The reproducibility was assessed within and between laboratories using a validation set of 13 selected chemicals (known human inducers and non-inducers) tested under blind conditions. The ability of the two methods to predict human CYP induction potential was assessed. Chemical space analysis confirmed that the selected chemicals are broadly representative of a diverse range of chemicals. The two methods were found to be reliable and relevant in vitro tools for the assessment of human CYP induction, with the HepaRG method being better suited for routine testing. Recommendations for the practical application of the two methods are proposed.


Assuntos
Indutores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/biossíntese , Alternativas aos Testes com Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Indutores das Enzimas do Citocromo P-450/química , Indução Enzimática , Hepatócitos/efeitos dos fármacos , Humanos , Laboratórios , Reprodutibilidade dos Testes , Solubilidade
15.
Methods Mol Biol ; 1981: 175-186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016655

RESUMO

Drug-induced cholestasis is one of the most severe manifestations of drug-induced liver injury. Drug-induced cholestasis is characterized by an accumulation of endogenous metabolites normally excreted in the bile such as bile salts, cholesterol, bilirubin, or drug metabolites. The possibility to determine early in the drug development process whether a compound presents a risk of inducing drug-induced cholestasis is key information. Since preclinical repeated dose toxicity studies have limited predictive value, large efforts in identifying alternative in vitro models with improved prediction are being made. One of the best current models for in vitro human liver is primary human hepatocytes, and we recently reported that primary human hepatocytes can be kept as long-term cultures in 2D-sandwich configuration when regularly renewing the Matrigel overlay, thereby making the model useful for repeat exposure-related toxicities, as well as for the study of adaptive responses. This primary human hepatocyte culture system combined with transcriptomics carries the future promise to identify individual gene expression profiles predictive of increased drug-induced cholestasis risk.This chapter describes the various steps for culturing and exposing primary human hepatocytes to drugs during long-term 2D-sandwich culture, performing RNA extraction, gene chip assay and selecting hepatotoxic signature using the IPA software and highlighting genes involved in bile acid homeostasis.


Assuntos
Colestase/genética , Perfilação da Expressão Gênica/métodos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Hepatócitos/metabolismo , Humanos , Software
16.
Methods Mol Biol ; 1981: 335-350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016665

RESUMO

Drug-induced cholestasis poses a major hurdle for the pharmaceutical industry as it is one the primary mechanisms of drug-induced liver injury. Hence, detection of drug-induced cholestasis during the early stages of drug development is of utmost importance. The most commonly used in vitro models rely on the extent of inhibition of bile salt export pump-mediated taurocholic acid transport, thereby assuming that drug-induced cholestasis mechanisms are merely restricted to the interaction with this sole hepatic transporter. Sandwich-cultured human hepatocytes represent a more holistic in vitro tool to investigate drug-induced cholestasis as they preserve all relevant disposition pathways and cellular functions involved in bile acid homeostasis. We developed and validated a sandwich-cultured human hepatocytes-based in vitro assay which is able to identify compounds causing cholestasis by altering bile acid disposition. The in vitro cholestatic potential is expressed by calculating a drug-induced cholestasis index value, which reflects the relative residual urea formation of sandwich-cultured human hepatocytes co-incubated with bile acids and test compound as compared to sandwich-cultured human hepatocytes treated with test compound alone. In addition, a safety margin can be calculated to determine the in vivo risk for cholestasis based on the determination of the drug-induced cholestasis index at various concentrations and the peak plasma concentration of the drug candidate. This chapter outlines the various steps involved in performing our sandwich-cultured human hepatocytes-based in vitro assay.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/metabolismo , Colestase/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Células Cultivadas , Humanos
17.
Tissue Eng Part C Methods ; 24(9): 534-545, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30101670

RESUMO

Recent advances in the development of various culture platforms are promising for achieving more physiologically relevant in vitro hepatic models using primary human hepatocytes (PHHs). Previous studies have shown the value of PHHs three-dimensional (3D) spheroid models, cultured in low cell number (1330-2000 cells/3D spheroid), to study long-term liver function as well as pharmacological drug effects and toxicity. In this study, we report that only plateable PHHs aggregate and form compact 3D spheroids with a success rate of 79%, and 96% reproducibility. Out of 3D spheroid forming PHH lots, 65% were considered stable (<50% ATP decrease) over the subsequent 14 days of culture, with reproducibility of a given PHH lot being 82%. We also report successful coculturing of PHHs with human liver nonparenchymal cells (NPCs). Crude P1c-NPC fractions were obtained by low centrifugation of the PHH supernatant fraction followed by a few days of culture before harvesting and cryopreservation. At aggregation of PHHs/P1c-NPCs (2:1 ratio 3D spheroids), liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells were successfully integrated and remained present throughout the subsequent 14-day culture period as revealed by mRNA expression markers and immunostaining. Increased mRNA expression of albumin (ALB), apolipoprotein B (APOB), cytochrome P450 3A4 (CYP3A4), and increased albumin secretion compared to PHH 3D spheroid monocultures highlighted that in a 3D spheroid coculture, configuration with NPCs, PHH functionality is increased. We thus achieved the development of a more integrated coculture model system requiring low cell numbers, of particular interest due to the scarcity of human liver NPCs.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/citologia , Esferoides Celulares/citologia , Trifosfato de Adenosina/metabolismo , Biomarcadores/metabolismo , Agregação Celular , Separação Celular , Forma Celular , Tamanho Celular , Sobrevivência Celular , Técnicas de Cocultura , Criopreservação , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Células de Kupffer/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esferoides Celulares/metabolismo , Fatores de Tempo
18.
FEBS Open Bio ; 8(6): 986-1000, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29928578

RESUMO

Suppression of the expression or activities of enzymes that are involved in the synthesis of de novo lipogenesis (DNL) in cancer cells triggers cell death via apoptosis. The plasma membrane citrate transporter (PMCT) is the initial step that translocates citrate from blood circulation into the cytoplasm for de novo long-chain fatty acids synthesis. This study investigated the antitumor effect of the PMCT inhibitor (PMCTi) in inducing apoptosis by inhibiting the DNL pathway in HepG2 cells. The present findings showed that PMCTi reduced cell viability and enhanced apoptosis through decreased intracellular citrate levels, which consequently caused inhibition of fatty acid and triacylglycerol productions. Thus, as a result of the reduction in fatty acid synthesis, the activity of carnitine palmitoyl transferase-1 (CPT-1) was suppressed. Decreased CPT-1 activity also facilitated the disruption of mitochondrial membrane potential (ΔΨm) leading to stimulation of apoptosis. Surprisingly, primary human hepatocytes were not affected by PMCTi. Increased caspase-8 activity as a consequence of reduction in fatty acid synthesis was also found to cause disruption of ΔΨm. In addition, apoptosis induction by PMCTi was associated with an enhanced reactive oxygen species generation. Taken together, we suggest that inhibition of the DNL pathway following reduction in citrate levels is an important regulator of apoptosis in HepG2 cells via suppression of CPT-1 activity. Thus, targeting the DNL pathway mediating CPT-1 activity by PMCTi may be a selective potential anticancer therapy.

19.
Toxicol Lett ; 295: 187-194, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913214

RESUMO

Cholestasis represents a major subtype of drug-induced liver injury and novel preclinical models for its prediction are needed. Here we used primary human hepatocytes (PHH) from different donors in 2D-sandwich (2D-sw) and/or 3D-spheroid cultures to study inter-individual differences in the response towards cholestatic hepatotoxins after short-term (48-72 hours) and long-term repeated exposures (14 days). The cholestatic liabilities of drugs were determined by comparing cell viability upon exposure to the highest non-cytotoxic drug concentration in the presence and absence of a non-cytotoxic concentrated bile acid mixture. In 2D-sw culture, cyclosporine A and amiodarone presented clear cholestatic liabilities in all four PHH donors tested, whereas differences in the susceptibility of the various PHH donors towards the cholestatic toxicity of bosentan, chlorpromazine and troglitazone were observed. In PHH from one donor, the cholestatic liabilities of chlorpromazine and troglitazone could only be detected after long-term repeated exposures when maintained in 3D-spheroid culture, but not after short-term exposures in either 2D-sw or 3D-spheroid culture, suggesting that cholestatic hepatotoxicity may require time to develop. In conclusion, inter-individual susceptibility exists towards drug-induced cholestasis, which depends on the compound as well as the exposure time.


Assuntos
Canalículos Biliares/efeitos dos fármacos , Variação Biológica da População , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Colestase/induzido quimicamente , Hepatócitos/efeitos dos fármacos , Idoso , Canalículos Biliares/metabolismo , Canalículos Biliares/patologia , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/metabolismo , Colestase/patologia , Relação Dose-Resposta a Droga , Feminino , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Medição de Risco , Esferoides Celulares , Fatores de Tempo
20.
Regul Toxicol Pharmacol ; 95: 348-361, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29626562

RESUMO

Propaquizafop is an herbicide with demonstrated hepatocarcinogenic activity in rodents. A rodent-specific mode of action (MOA) in the liver via activation of peroxisome proliferator-activated receptor α (PPARα) has been postulated based on existing data. Experience with PPARα-inducing pharmaceuticals indicates a lack of human relevance of this MOA. The objective of the present investigation was to evaluate the dependency of early key events leading to liver tumors on PPARα activation in wildtype (WT) compared to PPARα-knockout (KO) rats following 2 weeks exposure to 75, 500 and 1000 ppm propaquizafop in the diet. In WT rats, both WY-14643 (50 mg/kg bw/day) and propaquizafop (dose-dependently) induced marked increases in liver weights, correlating with liver enlargement and hepatocellular hypertrophy, along with increased CYP4A and acyl-CoA oxidase mRNA expression and enzyme activities versus controls, while in KO rats liver weight was mildly increased only at the high dose with minimal microscopic correlates and without any changes in liver peroxisomal or CYP4A activities. In addition, BrdU labeling resulted in higher numbers and density of positive hepatocytes versus controls in WT but not in KO rats, indicating increased mitotic activity and cell proliferation only in WT rats, thus confirming the PPARα-dependency of the biochemical and histological changes in the liver. Based on an assessment of the results of this investigation, together with existing propaquizafop data according to the MOA-Human Relevance Framework, we conclude that liver tumors observed in rodents after dietary administration of propaquizafop do not pose a relevant health risk to humans.


Assuntos
Herbicidas/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , PPAR alfa/metabolismo , Propionatos/toxicidade , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , PPAR alfa/genética , Ratos Sprague-Dawley , Ratos Transgênicos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...