Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4925, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582800

RESUMO

Proteins from the signal transduction ATPases with numerous domains (STAND) family are known to play an important role in innate immunity. However, it remains less well understood how they function in transcriptional regulation. MalT is a bacterial STAND that controls the Escherichia coli maltose system. Inactive MalT is sequestered by different inhibitory proteins such as MalY. Here, we show that MalY interacts with one oligomerization interface of MalT to form a 2:2 complex. MalY represses MalT activity by blocking its oligomerization and strengthening ADP-mediated MalT autoinhibition. A loop region N-terminal to the nucleotide-binding domain (NBD) of MalT has a dual role in mediating MalT autoinhibition and activation. Structural comparison shows that ligand-binding induced oligomerization is required for stabilizing the C-terminal domains and conferring DNA-binding activity. Together, our study reveals the mechanism whereby a prokaryotic STAND is inhibited by a repressor protein and offers insights into signaling by STAND transcription activators.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Maltose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo
2.
Nucleic Acids Res ; 47(7): 3795-3810, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30788511

RESUMO

Upon triggering by their inducer, signal transduction ATPases with numerous domains (STANDs), initially in monomeric resting forms, multimerize into large hubs that activate target macromolecules. This process requires conversion of the STAND conserved core (the NOD) from a closed form encasing an ADP molecule to an ATP-bound open form prone to multimerize. In the absence of inducer, autoinhibitory interactions maintain the NOD closed. In particular, in resting STAND proteins with an LRR- or WD40-type sensor domain, the latter establishes interactions with the NOD that are disrupted in the multimerization-competent forms. Here, we solved the first crystal structure of a STAND with a tetratricopeptide repeat sensor domain, PH0952 from Pyrococcus horikoshii, revealing analogous NOD-sensor contacts. We use this structural information to experimentally demonstrate that similar interactions also exist in a PH0952 homolog, the MalT STAND archetype, and actually contribute to the MalT autoinhibition in vitro and in vivo. We propose that STAND activation occurs by stepwise release of autoinhibitory contacts coupled to the unmasking of inducer-binding determinants. The MalT example suggests that STAND weak autoinhibitory interactions could assist the binding of inhibitory proteins by placing in register inhibitor recognition elements born by two domains.


Assuntos
Adenosina Trifosfatases/química , Conformação Proteica , Domínios Proteicos/genética , Repetições de Tetratricopeptídeos/genética , Adenosina Trifosfatases/genética , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína/genética , Transdução de Sinais/genética , Repetições WD40/genética
3.
Mol Microbiol ; 90(6): 1309-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24134781

RESUMO

Signal transduction ATPases with numerous domains (STAND) are widespread proteins, whose activation involves inducer-dependent conversion of resting ADP-bound monomers into active ATP-bound multimers. This process notably comprises opening of the nucleotide-binding oligomerization domain (NOD), nucleotide exchange and NOD-mediated multimerization. How inducer binding to the sensor domain, whose structure is not conserved throughout the STAND family, causes protein activation remains unclear. We used MalT, an Escherichia coli transcription factor, as a STAND model system, to address this question by dissecting the signalling pathway in vitro. We have found that inducer binding to the sensor is the first step of the activation pathway. It both triggers opening of the NOD and makes the MalT multimer competent for binding promoter MalT sites via its DNA-binding domains. Based on available data, we proposed that inducer trigger of NOD opening is a conserved STAND feature, irrespective of the sensor structure. As discussed, an additional role for the inducer, as found for MalT, might pertain to other types of STANDs.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Biológicos , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Trissacarídeos/metabolismo
4.
Mol Microbiol ; 85(4): 632-47, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22715926

RESUMO

MalK, the cytoplasmic component of the maltose ABC transporter from Escherichia coli is known to control negatively the activity of MalT, the activator of the maltose regulon, through complex formation. Here we further investigate this regulatory process by monitoring MalT activity and performing fluorescence microscopy analyses under various conditions. We establish that, under physiological conditions, the molecular entity that interacts with MalT is not free MalK, but the maltose transporter, MalFGK(2) , which sequesters MalT to the membrane. Furthermore, we provide compelling evidence that the transporter's ability to bind MalT is not constitutive, but strongly diminished when MalFGK(2) is engaged in sugar transport. Notably, the outward-facing transporter, i.e. the catalytic intermediate, is ineffective in inhibiting MalT compared to the inward-facing state, i.e. the resting form. Analyses of available genetic and structural data suggest how the interaction between one inactive MalT molecule and MalFGK(2) would be sensitive to the transporter state, thereby allowing MalT release upon maltose entrance. A related mechanism may underpin signalling by other ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Membrana Celular/química , Membrana Celular/enzimologia , Maltose/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Conformação Proteica
6.
J Bacteriol ; 192(19): 5181-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20693326

RESUMO

The signal transduction ATPases with numerous domains (STAND) are sophisticated signaling proteins that are related to AAA+ proteins and control various biological processes, including apoptosis, gene expression, and innate immunity. They function as tightly regulated switches, with the off and on positions corresponding to an ADP-bound, monomeric form and an ATP-bound, multimeric form, respectively. Protein activation is triggered by inducer binding to the sensor domain. ATP hydrolysis by the nucleotide-binding oligomerization domain (NOD) ensures the generation of the ADP-bound form. Here, we use MalT, an Escherichia coli transcription activator, as a model system to identify STAND conserved motifs involved in ATP hydrolysis besides the catalytic acidic residue. Alanine substitution of the conserved polar residue (H131) that is located two residues downstream from the catalytic residue (D129) blocks ATP hydrolysis and traps MalT in an active, ATP-bound, multimeric form. This polar residue is also conserved in AAA+. Based on AAA+ X-ray structures, we proposed that it is responsible for the proper positioning of the catalytic and the sensor I residues for the hydrolytic attack. Alanine substitution of the putative STAND sensor I (R160) abolished MalT activity. Substitutions of R171 impaired both ATP hydrolysis and multimerization, which is consistent with an arginine finger function and provides further evidence that ATP hydrolysis is primarily catalyzed by MalT multimers.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Cromatografia em Gel , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Immunoblotting , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Structure ; 17(2): 172-82, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19217388

RESUMO

The signal transduction ATPases with numerous domains (STAND) represent a newly recognized class of widespread, sophisticated ATPases that are related to the AAA+ proteins and that function as signaling hubs. These proteins control diverse biological processes in bacteria and eukaryotes, including gene expression, apoptosis, and innate immunity responses. They function as tightly regulated switches, with the off and on positions corresponding to a long-lived monomeric, ADP-bound form and a multimeric, ATP-bound form, respectively. Inducer binding to the sensor domain activates the protein by promoting ADP for ATP exchange, probably through removal of an intramolecular inhibitory interaction, whereas ATP hydrolysis turns off the protein. One key component of the switch is a three-domain module carrying the ATPase activity (nucleotide-binding oligomerization domain [NOD]). Analysis of the atomic structures of four crystallized nucleotide-bound NOD modules provides an unprecedented insight into the NOD conformational changes underlying the activation process.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Apoptose/fisiologia , Animais , Sobrevivência Celular/fisiologia , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína/fisiologia
8.
Mol Cell ; 28(2): 187-99, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17964259

RESUMO

The role of nucleotide hydrolysis in signaling by signal transduction ATPases with numerous domains (STAND) is poorly understood. Here we use MalT, the transcription activator of the Escherichia coli maltose regulon, as a model system to address this question. We have constructed the MalT-D129A variant that binds ATP but does not hydrolyze it and have characterized it in vivo and in vitro. ATP hydrolysis is not essential for transcription activation but is crucial in controlling MalT activity. MalT cycles between an ADP-bound, resting form that is the target of negative effectors and an ATP-bound, active form, which oligomerizes. Conversion to the active form involves nucleotide exchange and depends on maltotriose binding, whereas resetting to the inactive state relies on ATP hydrolysis, which ensues MalT multimerization. Such a controlled binary switch most likely applies to the other STAND NTPases, including Apaf-1 and the human innate immunity proteins NOD2, and CIAS1.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulon , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Difosfato de Adenosina/metabolismo , Cistationina gama-Liase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Retroalimentação Fisiológica , Hidrólise , Complexos Multiproteicos/metabolismo , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Trissacarídeos/metabolismo
9.
J Mol Biol ; 347(1): 1-10, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15733913

RESUMO

MalT, the dedicated transcriptional activator of the maltose regulon in Escherichia coli, is subject to multiple controls. Maltotriose, the inducer, promotes MalT self-association, a critical step in promoter binding, whereas three proteins acting as negative allosteric effectors (MalK, the ABC-component of the maltodextrin transporter, MalY, and Aes) antagonize maltotriose binding. All of these regulatory signals are integrated by a novel signal transduction module that comprises three out of the four MalT structural domains: DT1, the ATP-binding domain that contains determinants recognized by the negative effectors, DT2, and DT3, the maltotriose-binding domain. For a better insight into the role of DT3 in signal integration, we PCR mutagenized the DT3-encoding region and screened for gain of function mutations in a malK+ strain in the absence of repression by MalY or Aes. Most of the mutations isolated alter one of seven residues that are located in DT3 helices 10 and 11, or in the turn between them and delineate a surface-exposed motif. In vivo and in vitro analyses revealed that the substitutions altering the so-called H10/H11 motif do not affect the ability of MalT to activate transcription or its sensitivity to MalY and Aes, but dramatically decrease its sensitivity to MalK. We propose that MalT/MalK interaction might involve two distinct contact sites on each partner. These sites would be located in DT1 and DT3 of MalT, and in the nucleotide-binding domain and the regulatory domain of MalK. Such a two-point interaction model would explain how the regulatory activity of MalK might be coupled to transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Maltose/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
10.
J Mol Biol ; 343(5): 1159-69, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15491603

RESUMO

MalT, the dedicated transcriptional activator of the maltose regulon in Escherichia coli, is the prototype for a family of large (approximately 100 kDa) transcriptional activators. MalT self-association plays a key role in recognition of the target promoters, which contain several MalT sites that are cooperatively bound by the activator. The unliganded form of MalT is monomeric. The protein self-associates only in the presence of both ATP (or AMP-PNP, a non-hydrolysable analog of ATP) and maltotriose, the inducer. Here, we report cryo-electron microscopy analyses of MalT multimeric forms. We show that, in the presence of maltotriose and AMP-PNP, MalT associates into novel, polydisperse, curved homopolymers. The building block, corresponding to a MalT monomer, comprises an outer globular domain connected by a peduncle to an inner domain that mediates self-association. Image analyses highlight the significant conformational flexibility of these polymeric forms. In the presence of a DNA fragment containing a MalT-controlled promoter, malPp500, MalT forms homopolymers with a much smaller radius of curvature and a different conformation. We propose that MalT binding to the target promoters involves the assembly of a MalT homo-oligomer that is governed by the array of MalT sites present.


Assuntos
Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Fatores de Transcrição/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Análise Multivariada , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Nucleoproteínas/ultraestrutura , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura
11.
J Biol Chem ; 279(32): 33123-30, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15180985

RESUMO

MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, has long been known to control negatively the activity of MalT, a transcriptional activator dedicated to the maltose regulon. By using a biochemical approach and the soluble form of MalK as a model substrate, we demonstrate that MalK alone inhibits transcription activation by MalT in a purified transcription system. The inhibitory effect observed in vitro is relieved by maltotriose and by two malT mutations and one malK mutation known to interfere with MalT repression by MalK in vivo. MalK interacts directly with the activator in the absence of maltotriose but not in the presence of maltotriose. Conversely, MalK inhibits maltotriose binding by MalT. Altogether, these data strongly suggest that MalK and maltotriose compete for MalT binding. Part, if not all, of the MalK-binding site is located on DT1, the N-terminal domain of MalT. All of these features indicate that MalK inhibits MalT by the same mechanism as two other proteins, MalY and Aes, that also act as negative effectors of MalT by antagonizing maltotriose binding by MalT. These results offer new insights into the mechanism by which gene regulation can be accomplished by the ATPase component of a bacterial ATP-binding cassette-type importer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/farmacologia , Proteínas de Bactérias/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligação Competitiva , Transporte Biológico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Maltose/metabolismo , Mutação , Dobramento de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Trissacarídeos/metabolismo , Trissacarídeos/farmacologia
12.
J Bacteriol ; 184(11): 3069-77, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12003949

RESUMO

The maltose system of Escherichia coli consists of a number of genes encoding proteins involved in the uptake and metabolism of maltose and maltodextrins. The system is positively regulated by MalT, its transcriptional activator. MalT activity is controlled by two regulatory circuits: a positive one with maltotriose as effector and a negative one involving several proteins. MalK, the ATP-hydrolyzing subunit of the cognate ABC transporter, MalY, an enzyme with the activity of a cystathionase, and Aes, an acetyl esterase, phenotypically act as repressors of MalT activity. By in vivo titration assays, we have shown that the N-terminal 250 amino acids of MalT contain the interaction site for MalY but not for MalK. This was confirmed by gel filtration analysis, where MalY was shown to coelute with the N-terminal MalT structural domain. Mutants in MalT causing elevated mal gene expression in the absence of exogenous maltodextrins were tested in their response to the three repressors. The different MalT mutations exhibited a various degree of sensitivity towards these repressors, but none was resistant to all of them. Some of them became nearly completely resistant to Aes while still being sensitive to MalY. These mutations are located at positions 38, 220, 243, and 359, most likely defining the interaction patch with Aes on the three-dimensional structure of MalT.


Assuntos
Proteínas de Bactérias/metabolismo , Cistationina gama-Liase/metabolismo , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Maltose/metabolismo , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetilesterase , Proteínas de Bactérias/genética , Sítios de Ligação , Cromatografia em Gel , Mutação , Polissacarídeos/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/genética
13.
J Biol Chem ; 277(19): 16606-13, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11867639

RESUMO

MalT, the transcriptional activator of the maltose regulon from Escherichia coli, is the prototype of a new family of transcription factors. Its activity is controlled by multiple regulatory signals. ATP and maltotriose (the inducer) are two effectors of the activator that positively control its multimerization, a critical step in promoter binding. In addition, MalK, the ABC component of the maltodextrin transport system, and the two enzymes MalY and Aes down-regulate MalT activity in vivo. By using a biochemical approach, we demonstrate here that (i) Aes controls MalT activity through direct protein-protein interaction, (ii) Aes competes with maltotriose for MalT binding, (iii) ATP and ADP differentially affect the competition between Aes and the inducer, and (iv) part, if not all, of the Aes binding site is located in DT1, the N-terminal domain of the activator, which also contains the ATP binding site. All of these characteristics point toward an identical mode of action for MalY and Aes. However, we have identified an amino acid substitution in MalT that suppresses MalT inhibition by Aes without interfering with its inhibition by MalY, suggesting that the binding sites of the two inhibitory proteins do not coincide. The differential effects of ATP and ADP on the competition between the inducer and Aes (or MalY) suggest that the ATPase activity displayed by MalT plays a role in the negative control of its activity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Maltose/metabolismo , Proteínas/fisiologia , Fatores de Transcrição , Transcrição Gênica , Ativação Transcricional , Acetilesterase , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ligação Competitiva , Cromatografia , Cromatografia em Gel , Relação Dose-Resposta a Droga , Modelos Químicos , Plasmídeos/metabolismo , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...