Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 15(1): 203, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905924

RESUMO

Isolated from a wide range of sources, the genus Paenibacillus comprises bacterial species relevant to humans, animals, plants, and the environment. Many Paenibacillus species can promote crop growth directly via biological nitrogen fixation, phosphate solubilization, production of the phytohormone indole-3-acetic acid (IAA), and release of siderophores that enable iron acquisition. They can also offer protection against insect herbivores and phytopathogens, including bacteria, fungi, nematodes, and viruses. This is accomplished by the production of a variety of antimicrobials and insecticides, and by triggering a hypersensitive defensive response of the plant, known as induced systemic resistance (ISR). Paenibacillus-derived antimicrobials also have applications in medicine, including polymyxins and fusaricidins, which are nonribosomal lipopeptides first isolated from strains of Paenibacillus polymyxa. Other useful molecules include exo-polysaccharides (EPS) and enzymes such as amylases, cellulases, hemicellulases, lipases, pectinases, oxygenases, dehydrogenases, lignin-modifying enzymes, and mutanases, which may have applications for detergents, food and feed, textiles, paper, biofuel, and healthcare. On the negative side, Paenibacillus larvae is the causative agent of American Foulbrood, a lethal disease of honeybees, while a variety of species are opportunistic infectors of humans, and others cause spoilage of pasteurized dairy products. This broad review summarizes the major positive and negative impacts of Paenibacillus: its realised and prospective contributions to agriculture, medicine, process manufacturing, and bioremediation, as well as its impacts due to pathogenicity and food spoilage. This review also includes detailed information in Additional files 1, 2, 3 for major known Paenibacillus species with their locations of isolation, genome sequencing projects, patents, and industrially significant compounds and enzymes. Paenibacillus will, over time, play increasingly important roles in sustainable agriculture and industrial biotechnology.


Assuntos
Paenibacillus/fisiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Paenibacillus/genética , Paenibacillus/metabolismo
2.
Biotechnol Adv ; 33(8): 1572-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26232717

RESUMO

The production of recombinant vaccines in plants may help to reduce the burden of veterinary diseases, which cause major economic losses and in some cases can affect human health. While there is abundant research in this area, a knowledge gap exists between the ability to create and evaluate plant-based products in the laboratory, and the ability to take these products on a path to commercialization. The current report, arising from a workshop sponsored by an Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme, addresses this gap by providing guidance in planning for the commercialization of plant-made vaccines for animal use. It includes relevant information on developing business plans, assessing market opportunities, manufacturing scale-up, financing, protecting and using intellectual property, and regulatory approval with a focus on Canadian regulations.


Assuntos
Doenças dos Animais/economia , Doenças dos Animais/prevenção & controle , Vacinas Sintéticas/economia , Doenças dos Animais/imunologia , Animais , Canadá , Humanos , Plantas/genética , Plantas/metabolismo , Vacinas Sintéticas/imunologia
3.
Sci Eng Ethics ; 18(2): 241-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21365474

RESUMO

Reports of research fraud have raised concerns about research integrity similar to concerns raised about financial accounting fraud. We propose a departure from self-regulation in that researchers adopt the financial accounting approach in establishing trust through an external validation process, in addition to the reporting entities and the regulatory agencies. The general conceptual framework for reviewing financial reports, utilizes external auditors who are certified and objective in using established standards to provide an opinion on the financial reports. These standards have become both broader in scope and increasingly specific as to what information is reported and the methodologies to be employed. We believe that the financial reporting overhaul encompassed in the US Sarbanes-Oxley Act of 2002, which aims at preventing accounting fraud, can be applied to scientific research in 4 ways. First, Sarbanes-Oxley requires corporations to have a complete set of internal accounting controls. Research organizations should use appropriate sampling techniques and audit research projects for conformity with the initial research protocols. Second, corporations are required to have the chief financial officer certify the accuracy of their financial statements. In a similar way, each research organization should have their vice-president of research (or equivalent) certify the research integrity of their research activities. In contrast, the primary responsibility of the existing Research Integrity Officers is to handle allegations of research misconduct, an after-the-fact activity. Third, generally accepted auditing standards specify the appropriate procedures for external review of a corporation's financial statements. For similar reasons, the research review process would also require corresponding external auditing standards. Finally, these new requirements would be implemented in stages, with the largest 14 research organizations that receive 25% of the total National Institutes of Health funding, adopting these research oversight enhancements first.


Assuntos
Ética em Pesquisa , Fraude , Guias como Assunto , Ciência/ética , Má Conduta Científica , Confiança , Ética nos Negócios , Auditoria Financeira , Humanos , Ciência/normas , Estados Unidos
4.
Plant Biotechnol J ; 9(4): 419-33, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21338467

RESUMO

For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.


Assuntos
Plantas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Células Artificiais/química , Células Artificiais/metabolismo , Elastina/biossíntese , Elastina/química , Elastina/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Peptídeos/química , Peptídeos/genética , Plantas/química , Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Zeína/biossíntese , Zeína/química , Zeína/genética
5.
Recent Pat Biotechnol ; 4(3): 242-59, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21171961

RESUMO

Until recently, low accumulation levels have been the major bottleneck for plant-made recombinant protein production. However, several breakthroughs have been described in the past few years allowing for very high accumulation levels, mainly through chloroplast transformation and transient expression, coupled with subcellular targeting and protein fusions. Another important factor influencing our ability to use plants for the production of recombinant proteins is the availability of quick and simple purification strategies. Recent developments using oleosin, zein, ELP and hydrophobin fusion tags have shown promise as efficient and cost-effective methods for non-chromatographic separation. Furthermore, plant glycosylation is a major barrier to the parenteral administration of plant-made biopharmaceuticals because of potential immunogenicity concerns. A major effort has been invested in humanizing plant glycosylation, and several groups have been able to reduce or eliminate immunogenic glycans while introducing mammalian-specific glycans. Finally, biosafety issues and public perception are essential for the acceptance of plants as bioreactors for the production of proteins. Over recent years, it has become clear that food and feed plants carry an inherent risk of contaminating our food supply, and thus much effort has focused on the use of non-food plants. Presently, Nicotiana benthamiana has emerged as the preferred host for transient expression, while tobacco is most frequently used for chloroplast transformation. In this review, we focus on the main issues hindering the economical production of recombinant proteins in plants, describing the current efforts for addressing these limitations, and we include an extensive list of recent patents generated with the intention of solving these limitations.


Assuntos
Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Modificação Traducional de Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Reatores Biológicos , Cloroplastos/metabolismo , Glicosilação , Patentes como Assunto , Nicotiana/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-20423324

RESUMO

Until recently, low accumulation levels have been the major bottleneck for plant-made recombinant protein production. However, several breakthroughs have been described in the past few years allowing for very high maccumulation levels, mainly through chloroplast transformation and transient expression, coupled with subcellular targeting and protein fusions. Another important factor influencing our ability to use plants for the production of recombinant proteins is the availability of quick and simple purification strategies. Recent developments using oleosin, zein, ELP and hydrophobin fusion tags have shown promise as efficient and cost-effective methods for nonchromatographic separation. Furthermore, plant glycosylation is a major barrier to the parenteral administration of plantmade biopharmaceuticals because of potential immunogenicity concerns. A major effort has been invested in humanizing plant glycosylation, and several groups have been able to reduce or eliminate immunogenic glycans while introducing mammalian-specific glycans. Finally, biosafety issues and public perception are essential for the acceptance of plants as bioreactors for the production of proteins. Over recent years, it has become clear that food and feed plants carry an inherent risk of contaminating our food supply, and thus much effort has focused on the use of non-food plants. Presently, Nicotiana benthamiana has emerged as the preferred host for transient expression, while tobacco is most frequently used for chloroplast transformation. In this review, we focus on the main issues hindering the economical production of recombinant proteins in plants, describing the current efforts for addressing these limitations, and we include an extensive list of recent patents generated with the intention of solving these limitations.

8.
Transgenic Res ; 16(2): 239-49, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17106768

RESUMO

The production of recombinant proteins in plants is an active area of research and many different high-value proteins have now been produced in plants. Tobacco leaves have many advantages for recombinant protein production particularly since they allow field production without seeds, flowers or pollen and therefore provide for contained production. Despite these biosafety advantages recombinant protein accumulation in leaves still needs to be improved. Elastin-like polypeptides are repeats of the amino acids "VPGXG" that undergo a temperature dependant phase transition and have utility in the purification of recombinant proteins but can also enhance the accumulation of recombinant proteins they are fused to. We have used a 11.3 kDa elastin-like polypeptide as a fusion partner for three different target proteins, human interleukin-10, murine interleukin-4 and the native major ampullate spidroin protein 2 gene from the spider Nephila clavipes. In both transient analyses and stable transformants the concentrations of the fusion proteins were at least an order of magnitude higher for all of the fusion proteins when compared to the target protein alone. Therefore, fusions with a small ELP tag can be used to significantly enhance the accumulation of a range of different recombinant proteins in plant leaves.


Assuntos
Elastina/genética , Nicotiana/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/biossíntese , Nicotiana/metabolismo
9.
Plant Mol Biol ; 61(1-2): 47-62, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16786291

RESUMO

The sweet steviol glycosides found in the leaves of Stevia rebaudiana Bert. are derived from the diterpene steviol which is produced from a branch of the gibberellic acid (GA) biosynthetic pathway. An understanding of the spatial organisation of the two pathways including subcellular compartmentation provides important insight for the metabolic engineering of steviol glycosides as well as other secondary metabolites in plants. The final step of GA biosynthesis, before the branch point for steviol production, is the formation of (-)-kaurenoic acid from (-)-kaurene, catalysed by kaurene oxidase (KO). Downstream of this, the first committed step in steviol glycoside synthesis is the hydroxylation of kaurenoic acid to form steviol which is then sequentially glucosylated by a series of UDP-glucosyltransferases (UGTs) to produce the variety of steviol glycosides. The subcellular location of KO and three of the UGTs involved in steviol glycoside biosynthesis was investigated by expression of GFP fusions and cell fractionation which revealed KO to be associated with the endoplasmic reticulum and the UGTs in the cytoplasm. It has also been shown by expressing the Stevia UGTs in Arabidopsis that the pathway can be partially reconstituted by recruitment of a native Arabidopsis glucosyltransferase.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Glucosiltransferases/metabolismo , Glicosídeos/biossíntese , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Stevia/enzimologia , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fracionamento Celular , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/genética , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Diterpenos do Tipo Caurano/química , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Giberelinas/metabolismo , Glucosiltransferases/análise , Glucosiltransferases/genética , Glicosídeos/química , Proteínas de Fluorescência Verde/análise , Oxigenases/análise , Oxigenases/genética , Proteínas de Plantas/análise , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/análise , Stevia/citologia , Stevia/genética
10.
Plant J ; 41(1): 56-67, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15610349

RESUMO

Stevia rebaudiana leaves accumulate a mixture of at least eight different steviol glycosides. The pattern of glycosylation heavily influences the taste perception of these intensely sweet compounds. The majority of the glycosides are formed by four glucosylation reactions that start with steviol and end with rebaudioside A. The steps involve the addition of glucose to the C-13 hydroxyl of steviol, the transfer of glucose to the C-2' and C-3' of the 13-O-glucose and the addition of glucose to the hydroxyl of the C-4 carboxyl group. We used our collection of ESTs, an UDP-glucosyltransferase (UGT)-specific electronic probe and key word searches to identify candidate genes resident in our collection. Fifty-four expressed sequence tags (ESTs) belonging to 17 clusters were found using this procedure. We isolated full length cDNAs for 12 of the UGTs, cloned them into an expression vector, and produced recombinant enzymes in Escherichia coli. An in vitro glucosyltransferase activity enzyme assay was conducted using quercetin, kaempferol, steviol, steviolmonoside, steviolbioside, and stevioside as sugar acceptors, and (14)C-UDP-glucose as the donor. Thin layer chromatography was used to separate the products and three of the recombinant enzymes produced labelled products that co-migrated with known standards. HPLC and LC-ES/MS were then used to further define those reaction products. We determined that steviol UGTs behave in a regioselective manner and propose a modified pathway for the synthesis of rebaudioside A from steviol.


Assuntos
Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Stevia/enzimologia , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Etiquetas de Sequências Expressas , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Stevia/metabolismo
11.
Plant Biotechnol J ; 2(5): 431-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17168889

RESUMO

Spider dragline silk is a unique biomaterial and represents nature's strongest known fibre. As it is almost as strong as many commercial synthetic fibres, it is suitable for use in many industrial and medical applications. The prerequisite for such a widespread use is the cost-effective production in sufficient quantities for commercial fibre manufacturing. Agricultural biotechnology and the production of recombinant dragline silk proteins in transgenic plants offer the potential for low-cost, large-scale production. The purpose of this work was to examine the feasibility of producing the two protein components of dragline silk (MaSp1 and MaSp2) from Nephila clavipes in transgenic tobacco. Two different promoters, the enhanced CaMV 35S promoter (Kay et al., 1987) and a new tobacco cryptic constitutive promoter, tCUP (Foster et al., 1999) were used, in conjunction with a plant secretory signal (PR1b), a translational enhancer (alfalfa mosaic virus, AMV) and an endoplasmic reticulum (ER) retention signal (KDEL), to express the MaSp1 and MaSp2 genes in the leaves of transgenic plants. Both genes expressed successfully and recombinant protein accumulated in transgenic plants grown in both greenhouse and field trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...