Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(20): 28961-28968, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114804

RESUMO

Many technologies in quantum photonics require cryogenic conditions to operate. However, the underlying platform behind active components such as switches, modulators and phase shifters must be compatible with these operating conditions. To address this, we demonstrate an electro-optic polarisation converter for 1550 nm light at 0.8 K in titanium in-diffused lithium niobate waveguides. To do so, we exploit the electro-optic properties of lithium niobate to convert between orthogonal polarisation modes with a fiber-to-fiber transmission >43%. We achieve a modulation depth of 23.6±3.3 dB and a conversion voltage-length product of 28.8 V cm. This enables the combination of cryogenic photonics and active components on a single integration platform.

2.
Opt Express ; 28(3): 3215-3225, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121994

RESUMO

Counter-propagating parametric conversion processes in non-linear bulk crystals have been shown to feature unique properties for efficient narrowband frequency conversion. In quantum optics, the generation of photon pairs with a counter-propagating parametric down-conversion process (PDC) in a waveguide, where signal and idler photons propagate in opposite directions, offers unique material-independent engineering capabilities. However, realizing counter-propagating PDC necessitates quasi-phase-matching (QPM) with extremely short poling periods. Here, we report on the generation of counter-propagating single-photon pairs in a self-made periodically poled lithium niobate waveguide with a poling period on the same order of magnitude as the generated wavelength. The single photons of the biphoton state bridge GHz and THz bandwidths with a separable joint temporal-spectral behavior. Furthermore, they allow the direct observation of the temporal envelope of heralded single photons with state-of-the art photon counters.

3.
Sci Adv ; 5(1): eaat1451, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30613766

RESUMO

Future quantum computation and networks require scalable monolithic circuits, which incorporate various advanced functionalities on a single physical substrate. Although substantial progress for various applications has already been demonstrated on different platforms, the range of diversified manipulation of photonic states on demand on a single chip has remained limited, especially dynamic time management. Here, we demonstrate an electro-optic device, including photon pair generation, propagation, electro-optical path routing, as well as a voltage-controllable time delay of up to ~12 ps on a single Ti:LiNbO3 waveguide chip. As an example, we demonstrate Hong-Ou-Mandel interference with a visibility of more than 93 ± 1.8%. Our chip not only enables the deliberate manipulation of photonic states by rotating the polarization but also provides precise time control. Our experiment reveals that we have full flexible control over single-qubit operations by harnessing the complete potential of fast on-chip electro-optic modulation.

4.
Nat Commun ; 8: 14288, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134242

RESUMO

Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

5.
Opt Express ; 22(17): 20205-13, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321230

RESUMO

Accurate amplitude and phase measurements of ultrashort optical waveforms are essential for their use in a wide range of scientific disciplines. Here we report the first demonstration of full-field optical reconstruction of ultrashort waveforms using a time-to-space converter, followed by a spatial recording of an interferogram. The algorithm-free technique is demonstrated by measuring ultrashort pulses that are widely frequency chirped from negative to positive, as well as phase modulated pulse packets. Amplitude and phase measurements were recorded for pulses ranging from 0.5 ps to 10 ps duration, with measured dimensionless chirp parameter values from -30 to 30. The inherently single-shot nature of time-to-space conversion enables full-field measurement of complex and non-repetitive waveforms.

6.
Phys Rev Lett ; 113(5): 053603, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126920

RESUMO

Future multiphoton applications of quantum optics and quantum information science require quantum memories that simultaneously store many photon states, each encoded into a different optical mode, and enable one to select the mapping between any input and a specific retrieved mode during storage. Here we show, with the example of a quantum repeater, how to employ spectrally multiplexed states and memories with fixed storage times that allow such mapping between spectral modes. Furthermore, using a Ti:Tm:LiNbO_{3} waveguide cooled to 3 K, a phase modulator, and a spectral filter, we demonstrate storage followed by the required feed-forward-controlled frequency manipulation with time-bin qubits encoded into up to 26 multiplexed spectral modes and 97% fidelity.

7.
Opt Express ; 22(25): 31138-45, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607063

RESUMO

Phase modulated sub-picosecond pulses are converted by a time-to-space processor to quasi-monochromatic spatial beams that are spatially demultiplexed and coherently detected in real-time. The time-to-space processor, based on sum-frequency generation (SFG), serves as a serial-to-parallel converter, reducing the temporal bandwidth of the ultrashort pulse to match the bandwidth of optoelectronic receivers. As the SFG process is phase preserving, we demonstrate homodyne coherent detection of phase modulated temporal pulses by mixing the demultiplexed SFG beam with a narrow linewidth local oscillator (LO) resulting in single-shot phase detection of the converted pulses at a balanced detector. Positively and negatively phase-modulated signal pulses are individually detected and LO shot noise limited operation is achieved. This demonstration of real-time demultiplexing followed by single-shot full-field detection of individual pulses, highlights the potential of time-to-space conversion for ultrahigh bit rate optical communications and data processing applications.

8.
Opt Lett ; 38(22): 4708-11, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322112

RESUMO

We report the first demonstration, to our knowledge, of time-to-space conversion of subpicosecond pulses in a slab nonlinear waveguide. By vertically confining the nondegenerate sum-frequency generation interaction between a spatially dispersed 100 fs signal pulse at 1.55 µm and a reference pulse in a titanium indiffused planar periodically poled lithium niobate crystal waveguide, we have attained a conversion efficiency of 0.1% and a conversion efficiency slope of 4% per watt of reference beam power. This was achieved while maintaining high conversion resolution, with a measured time window of operation of 48 ps resulting in a serial-to-parallel demultiplexing factor of 90.

9.
Nat Commun ; 4: 2386, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985479

RESUMO

Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

10.
Opt Express ; 20(24): 27388-95, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187595

RESUMO

We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.


Assuntos
Lasers , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Modelos Lineares
11.
Phys Rev Lett ; 108(8): 083602, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463529

RESUMO

We demonstrate the conditional detection of time-bin qubits after storage in and retrieval from a photon-echo-based waveguide quantum memory. Each qubit is encoded into one member of a photon pair produced via spontaneous parametric down-conversion, and the conditioning is achieved by the detection of the other member of the pair. By performing projection measurements with the stored and retrieved photons onto different bases, we obtain an average storage fidelity of 0.885±0.020, which exceeds the relevant classical bounds and shows the suitability of our integrated light-matter interface for future applications of quantum information processing.

12.
Opt Express ; 19(23): 23188-201, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22109198

RESUMO

We study experimentally and numerically the dynamics of a recently found topological phase transition for discrete quadratic solitons with linearly coupled SH waves. We find that, although no stationary states are excited in the experimental situation, the generic feature of the phase transition of the SH is preserved. By utilizing simulations of the coupled mode equations we identify the complex processes leading to the phase transition involving spatial focusing and the generation of new frequency components. These distinct signatures of the dynamic phase transition are also demonstrated experimentally.

13.
Nature ; 469(7331): 512-5, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21228775

RESUMO

The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.

14.
Opt Express ; 18(13): 14225-31, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20588556

RESUMO

The efficiency of wavelength conversion by cascaded second harmonic generation / difference frequency generation (cSHG/DFG) in Ti:PPLN waveguides can be considerably improved by using a double-pass configuration. However, due to the wavelength dependent phase change by the dielectric folding mirror phase compensation is required to maintain an optimum power transfer. We experimentally investigated three different approaches and improved the wavelength conversion efficiency up to 9 dB in comparison with the single-pass configuration.


Assuntos
Nióbio , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Óxidos , Desenho de Equipamento , Luz , Modelos Teóricos , Dinâmica não Linear
15.
Opt Lett ; 29(2): 165-7, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14743998

RESUMO

A thermally fixed photorefractive Bragg grating is written in a single-mode Ti:Fe:Er:LiNbO3 channel waveguide and used to develop a distributed feedback-distributed Bragg reflector coupled cavity laser with a second broadband dielectric cavity mirror. The optically pumped (lambda(p) = 1480 nm, P = 130 mW) laser emits in single-frequency operation as much as 8 mW at lambda = 1557.2 nm with a slope efficiency of approximately 22%. The laser wavelength can be thermo-optically and electro-optically tuned over 100 pm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...