Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571955

RESUMO

An exchange protein directly activated by cAMP 1 (EPAC1) is an intracellular sensor for cAMP that is involved in a wide variety of cellular and physiological processes in health and disease. However, reagents are lacking to study its association with intracellular cAMP nanodomains. Here, we use non-antibody Affimer protein scaffolds to develop isoform-selective protein binders of EPAC1. Phage-display screens were carried out against purified, biotinylated human recombinant EPAC1ΔDEP protein (amino acids 149-811), which identified five potential EPAC1-selective Affimer binders. Dot blots and indirect ELISA assays were next used to identify Affimer 780A as the top EPAC1 binder. Mutagenesis studies further revealed a potential interaction site for 780A within the EPAC1 cyclic nucleotide binding domain (CNBD). In addition, 780A was shown to co-precipitate EPAC1 from transfected cells and co-localize with both wild-type EPAC1 and a mis-targeting mutant of EPAC1(K212R), predominantly in perinuclear and cytosolic regions of cells, respectively. As a novel EPAC1-selective binder, 780A therefore has the potential to be used in future studies to further understand compartmentalization of the cAMP-EPAC1 signaling system.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Humanos , Transdução de Sinais/fisiologia
2.
J Biol Chem ; 297(1): 100791, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015334

RESUMO

Super-resolution microscopy has become an increasingly popular and robust tool across the life sciences to study minute cellular structures and processes. However, with the increasing number of available super-resolution techniques has come an increased complexity and burden of choice in planning imaging experiments. Choosing the right super-resolution technique to answer a given biological question is vital for understanding and interpreting biological relevance. This is an often-neglected and complex task that should take into account well-defined criteria (e.g., sample type, structure size, imaging requirements). Trade-offs in different imaging capabilities are inevitable; thus, many researchers still find it challenging to select the most suitable technique that will best answer their biological question. This review aims to provide an overview and clarify the concepts underlying the most commonly available super-resolution techniques as well as guide researchers through all aspects that should be considered before opting for a given technique.


Assuntos
Microscopia/métodos , Animais , Sobrevivência Celular , Corantes Fluorescentes/química , Humanos , Simulação de Dinâmica Molecular
3.
J Biophotonics ; 14(7): e202000505, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33829644

RESUMO

We present the first realisation of simultaneous multi-spectral fluorescence imaging using a single-photon avalanche diode (SPAD) array, where the spectral unmixing is facilitated by a plasmonic metasurface mosaic colour filter array (CFA). A 64 × 64 pixel format silicon SPAD array is used to record widefield fluorescence and brightfield data from four biological samples. A plasmonic metasurface composed of an arrangement of circular and elliptical nanoholes etched into an aluminium thin film deposited on a glass substrate provides the high transmission efficiency CFA, enabling a bespoke spectral unmixing algorithm to reconstruct high fidelity, full colour images from as few as ∼3 photons per pixel. This approach points the way toward real-time, single-photon sensitive multi-spectral fluorescence imaging. Furthermore, this is possible without additional bulky components such as a filter wheel, prism or diffraction grating, nor the need for multiple sample exposures or multiple detectors.


Assuntos
Algoritmos , Fótons , Cor , Microscopia de Fluorescência , Imagem Óptica
4.
Opt Express ; 26(3): 2280-2291, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401768

RESUMO

Single-photon avalanche photodiode (SPAD) image sensors offer time-gated photon counting, at high binary frame rates of >100 kFPS and with no readout noise. This makes them well-suited to a range of scientific applications, including microscopy, sensing and quantum optics. However, due to the complex electronics required, the fill factor tends to be significantly lower (< 10%) than that of EMCCD and sCMOS cameras (>90%), whilst the pixel size is typically larger, impacting the sensitivity and practicalities of the SPAD devices. This paper presents the first characterisation of a cylindrical-shaped microlens array applied to a small, 8 micron, pixel SPAD imager. The enhanced fill factor, ≈50% for collimated light, is the highest reported value amongst SPAD sensors with comparable resolution and pixel pitch. We demonstrate the impact of the increased sensitivity in single-molecule localisation microscopy, obtaining a resolution of below 40nm, the best reported figure for a SPAD sensor.

5.
Curr Biol ; 27(3): 408-414, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28089515

RESUMO

Eukaryotic plasma membrane organization theory has long been controversial, in part due to a dearth of suitably high-resolution techniques to probe molecular architecture in situ and integrate information from diverse data streams [1]. Notably, clustered patterning of membrane proteins is a commonly conserved feature across diverse protein families (reviewed in [2]), including the SNAREs [3], SM proteins [4, 5], ion channels [6, 7], and receptors (e.g., [8]). Much effort has gone into analyzing the behavior of secretory organelles [9-13], and understanding the relationship between the membrane and proximal organelles [4, 5, 12, 14] is an essential goal for cell biology as broad concepts or rules may be established. Here we explore the generally accepted model that vesicles at the plasmalemma are guided by cytoskeletal tracks to specific sites on the membrane that have clustered molecular machinery for secretion [15], organized in part by the local lipid composition [16]. To increase our understanding of these fundamental processes, we integrated nanoscopy and spectroscopy of the secretory machinery with organelle tracking data in a mathematical model, iterating with knockdown cell models. We find that repeated routes followed by successive vesicles, the re-use of similar fusion sites, and the apparently distinct vesicle "pools" are all fashioned by the Brownian behavior of organelles overlaid on navigation between non-reactive secretory protein molecular depots patterned at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Organelas/metabolismo , Vesículas Secretórias/metabolismo , Animais , Transporte Biológico , Células PC12 , Ratos , Proteínas SNARE/metabolismo
6.
Sci Rep ; 6: 37349, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876857

RESUMO

Single molecule localisation microscopy (SMLM) has become an essential part of the super-resolution toolbox for probing cellular structure and function. The rapid evolution of these techniques has outstripped detector development and faster, more sensitive cameras are required to further improve localisation certainty. Single-photon avalanche photodiode (SPAD) array cameras offer single-photon sensitivity, very high frame rates and zero readout noise, making them a potentially ideal detector for ultra-fast imaging and SMLM experiments. However, performance traditionally falls behind that of emCCD and sCMOS devices due to lower photon detection efficiency. Here we demonstrate, both experimentally and through simulations, that the sensitivity of a binary SPAD camera in SMLM experiments can be improved significantly by aggregating only frames containing signal, and that this leads to smaller datasets and competitive performance with that of existing detectors. The simulations also indicate that with predicted future advances in SPAD camera technology, SPAD devices will outperform existing scientific cameras when capturing fast temporal dynamics.

7.
R Soc Open Sci ; 3(5): 160225, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27293801

RESUMO

Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

9.
Sci Rep ; 6: 19993, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822455

RESUMO

Super-resolution microscopy is transforming our understanding of biology but accessibility is limited by its technical complexity, high costs and the requirement for bespoke sample preparation. We present a novel, simple and multi-color super-resolution microscopy technique, called translation microscopy (TRAM), in which a super-resolution image is restored from multiple diffraction-limited resolution observations using a conventional microscope whilst translating the sample in the image plane. TRAM can be implemented using any microscope, delivering up to 7-fold resolution improvement. We compare TRAM with other super-resolution imaging modalities, including gated stimulated emission deletion (gSTED) microscopy and atomic force microscopy (AFM). We further developed novel 'ground-truth' DNA origami nano-structures to characterize TRAM, as well as applying it to a multi-color dye-stained cellular sample to demonstrate its fidelity, ease of use and utility for cell biology.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Células Endoteliais , Microscopia de Fluorescência/normas , Pontos Quânticos
10.
Cell Rep ; 12(12): 2131-42, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26387948

RESUMO

The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Serratia marcescens/genética , Sistemas de Secreção Tipo VI/genética , Proteínas de Bactérias/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Família Multigênica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serratia marcescens/metabolismo , Serratia marcescens/ultraestrutura , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/ultraestrutura , Proteína Vermelha Fluorescente
11.
Nat Commun ; 5: 5774, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25517944

RESUMO

Neuronal synapses are among the most scrutinized of cellular systems, serving as a model for all membrane trafficking studies. Despite this, synaptic biology has proven difficult to interrogate directly in situ due to the small size and dynamic nature of central synapses and the molecules within them. Here we determine the spatial and temporal interaction status of presynaptic proteins, imaging large cohorts of single molecules inside active synapses. Measuring rapid interaction dynamics during synaptic depolarization identified the small number of syntaxin1a and munc18-1 protein molecules required to support synaptic vesicle exocytosis. After vesicle fusion and subsequent SNARE complex disassembly, a prompt switch in syntaxin1a and munc18-1-binding mode, regulated by charge alteration on the syntaxin1a N-terminal, sequesters monomeric syntaxin1a from other disassembled fusion complex components, preventing ectopic SNARE complex formation, readying the synapse for subsequent rounds of neurotransmission.


Assuntos
Exocitose/genética , Proteínas Munc18/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Toxinas Botulínicas Tipo A/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fusão de Membrana , Imagem Molecular , Proteínas Munc18/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , Sintaxina 1/genética , Proteína Vermelha Fluorescente
12.
Front Endocrinol (Lausanne) ; 4: 147, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24146663

RESUMO

Exocytosis, the process in which material is transported from the cell interior to the extracellular space, proceeds through a complex mechanism. Defects in this process are linked to a number of serious illnesses including diabetes, cancer, and a range of neuropathologies. In neuroendocrine cells, exocytosis involves the fusion of secretory vesicles, carrying signaling molecules, with the plasma membrane through the coordinated interplay of proteins, lipids, and small molecules. This process is highly regulated and occurs in a complex three-dimensional environment within the cell precisely coupled to the stimulus. The study of exocytosis poses significant challenges, involving rapidly changing, nano-scale, protein-protein, and protein-lipid interactions, at specialized sites in the cell. Over the last decade our understanding of neuroendocrine exocytosis has been greatly enhanced by developments in fluorescence microscopy. Modern microscopy encompasses a toolbox of advanced techniques, pushing the limits of sensitivity and resolution, to probe different properties of exocytosis. In more recent years, the development of super-resolution microscopy techniques, side-stepping the limits of optical resolution imposed by the physical properties of light, have started to provide an unparalleled view of exocytosis. In this review we will discuss how advances in fluorescence microscopy are shedding light on the spatial and temporal organization of the exocytotic machinery.

14.
Nat Commun ; 4: 2056, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23804033

RESUMO

Kindlin-1 binds to integrins and regulates integrin activation at cell adhesions. Here we report a new function of Kindlin-1 in regulating spindle assembly. We show that Kindlin-1 localizes to centrosomes, its concentration peaking during G2/M, where it associates with various pericentriolar material proteins, including Polo-like kinase 1. Short interfering RNA-mediated depletion of Kindlin-1 increases formation of abnormal mitotic spindles and decreases cellular survival. This effect is dependent not only on the ability of Kindlin-1 to bind integrins but also on Polo-like kinase 1-mediated Kindlin-1 phosphorylation. We demonstrate that a subcellular pool of phosphorylated Kindlin-1 is located exclusively at centrosomes. Our work identifies a novel cellular role for Kindlin-1 in ensuring mitotic spindle assembly and cellular survival that is controlled by phosphorylation via Polo-like kinase 1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Western Blotting , Linhagem Celular Tumoral , Centrossomo/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fase G1 , Humanos , Fosforilação , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Fase S , Quinase 1 Polo-Like
15.
J Biol Chem ; 288(7): 5102-13, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23223447

RESUMO

Four evolutionarily conserved proteins are required for mammalian regulated exocytosis: three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin, and the SM protein, Munc18-1. Here, using single-molecule imaging, we measured the spatial distribution of large cohorts of single Munc18-1 molecules correlated with the positions of single secretory vesicles in a functionally rescued Munc18-1-null cellular model. Munc18-1 molecules were nonrandomly distributed across the plasma membrane in a manner not directed by mode of interaction with syntaxin1, with a small mean number of molecules observed to reside under membrane resident vesicles. Surprisingly, we found that the majority of vesicles in fully secretion-competent cells had no Munc18-1 associated within distances relevant to plasma membrane-vesicle SNARE interactions. Live cell imaging of Munc18-1 molecule dynamics revealed that the density of Munc18-1 molecules at the plasma membrane anticorrelated with molecular speed, with single Munc18-1 molecules displaying directed motion between membrane hotspots enriched in syntaxin1a. Our findings demonstrate that Munc18-1 molecules move between membrane depots distinct from vesicle morphological docking sites.


Assuntos
Proteínas Munc18/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Biofísica/métodos , Linhagem Celular , Membrana Celular/metabolismo , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Células PC12 , Ligação Proteica , Ratos , Proteínas SNARE/metabolismo
16.
PLoS One ; 7(11): e49514, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166692

RESUMO

Intercellular communication is commonly mediated by the regulated fusion, or exocytosis, of vesicles with the cell surface. SNARE (soluble N-ethymaleimide sensitive factor attachment protein receptor) proteins are the catalytic core of the secretory machinery, driving vesicle and plasma membrane merger. Plasma membrane SNAREs (tSNAREs) are proposed to reside in dense clusters containing many molecules, thus providing a concentrated reservoir to promote membrane fusion. However, biophysical experiments suggest that a small number of SNAREs are sufficient to drive a single fusion event. Here we show, using molecular imaging, that the majority of tSNARE molecules are spatially separated from secretory vesicles. Furthermore, the motilities of the individual tSNAREs are constrained in membrane micro-domains, maintaining a non-random molecular distribution and limiting the maximum number of molecules encountered by secretory vesicles. Together our results provide a new model for the molecular mechanism of regulated exocytosis and demonstrate the exquisite organization of the plasma membrane at the level of individual molecular machines.


Assuntos
Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Comunicação Celular , Linhagem Celular , Membrana Celular/metabolismo , Microscopia de Fluorescência , Imagem Molecular , Células PC12 , Transporte Proteico , Ratos
17.
Cell Mol Neurobiol ; 30(8): 1321-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21046449

RESUMO

The SNARE proteins, syntaxin, SNAP-25, and synaptobrevin have long been known to provide the driving force for vesicle fusion in the process of regulated exocytosis. Of particular interest is the initial interaction between SNAP-25 and syntaxin to form the t-SNARE heterodimer, an acceptor for subsequent synaptobrevin engagement. In vitro studies have revealed at least two different dynamic conformations of t-SNARE heterodimer defined by the degree of association of the C-terminal SNARE motif of SNAP-25 with syntaxin. At the plasma membrane, these proteins are organized into dense clusters of 50-60 nm in diameter. More recently, the t-SNARE interaction within these clusters was investigated in live cells at the molecular level, estimating each cluster to contain 35-70 t-SNARE molecules. This work reported the presence of both partially and fully zippered t-SNARE complex at the plasma membrane in agreement with the earlier in vitro findings. It also revealed a spatial segregation into distinct clusters containing predominantly one conformation apparently patterned by the surrounding lipid environment. The reason for this dynamic t-SNARE complex in exocytosis is uncertain; however, it does take us one step closer to understand the complex sequence of events leading to vesicle fusion, emphasizing the role of both membrane proteins and lipids.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas SNARE/metabolismo , Animais , Membrana Celular/metabolismo
18.
Cell Mol Neurobiol ; 30(8): 1309-13, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21046456

RESUMO

All neurotransmitter and hormone regulated secretory events involve the action of three soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, syntaxin, SNAP-25, and synaptobrevin. The SNARE proteins interact to form a four alpha-helical complex, involving syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the vesicular membrane, bringing the opposing membranes together, promoting bilayer merger and membrane fusion. The process of regulated secretion is an adaptation of the membrane fusion events which occur at multiple steps throughout the intracellular trafficking pathway, in each case catalyzed by SNARE protein isoforms. At all of these locations, the SNAREs are joined by a member of the Sec1p/Munc18 (SM) protein family which selectively bind to syntaxin isoforms. From their initial identification, the SM proteins were known to be essential for membrane fusion, however, over the intervening decades, deciphering the precise mechanism of action of the SM proteins has proved problematic. Recent studies, investigating the interactions of munc18-1 and syntaxin1, provide an explanation for previous, apparently conflicting, observations yielding a new understanding of their cellular functions.


Assuntos
Proteínas Munc18/metabolismo , Sintaxina 1/metabolismo , Animais , Modelos Moleculares , Proteínas Munc18/química , Ligação Proteica , Sintaxina 1/química
19.
J Biol Chem ; 285(49): 38141-8, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20801887

RESUMO

Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.


Assuntos
Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Vesículas Secretórias/metabolismo , Motivos de Aminoácidos , Animais , Membrana Celular/genética , Proteínas Munc18/genética , Células PC12 , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Ratos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Secretórias/genética
20.
J Biol Chem ; 285(18): 13535-41, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20093362

RESUMO

The spatial distribution of the target (t-)SNARE proteins (syntaxin and SNAP-25) on the plasma membrane has been extensively characterized. However, the protein conformations and interactions of the two t-SNAREs in situ remain poorly defined. By using super-resolution optical techniques and fluorescence lifetime imaging microscopy, we observed that within the t-SNARE clusters syntaxin and SNAP-25 molecules interact, forming two distinct conformations of the t-SNARE binary intermediate. These are spatially segregated on the plasma membrane with each cluster exhibiting predominantly one of the two conformations, representing the two- and three-helical forms previously observed in vitro. We sought to explain why these two t-SNARE intermediate conformations exist in spatially distinct clusters on the plasma membrane. By disrupting plasma membrane lipid order, we found that all of the t-SNARE clusters now adopted a single conformational state corresponding to the three helical t-SNARE intermediates. Together, our results define spatially distinct t-SNARE intermediate states on the plasma membrane and how the conformation adopted can be patterned by the underlying lipid environment.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Proteínas Qa-SNARE/química , Proteína 25 Associada a Sinaptossoma/química , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Células PC12 , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Ratos , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...