Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Biomech ; 37(1): 52-58, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348321

RESUMO

Shear wave elastography imaging of the ulnar collateral ligament (UCL) is used to help understand changes in material properties of the ligament. Ensuring that the wrist flexors are relaxed is essential as muscle contractions can alter the alignment of the medial elbow. The purpose of this study was to determine how the structural and material properties of the medial elbow respond to various elbow torques. The medial elbows of 20 healthy adults, free from upper extremity disorders, were imaged in 3 of the following torque conditions: (1) neutral relaxed, (2) passive valgus, and (3) active varus. Structural properties (ulnohumeral gap and UCL length) using B-mode and material properties (UCL and flexor muscle stiffness) using shear wave were measured. Passive valgus torque opened the ulnohumeral gap (P < .001), and increased UCL (P < .001) and wrist flexor stiffness (P = .001), compared with the neutral condition. Under an active varus contraction, the gap returned back to the neutral position, but UCL (P < .008) and wrist flexor stiffness (P < .004) remained elevated compared with neutral, meaning low-intensity torques can influence structural and material properties of the medial elbow. Therefore, effort should be taken to minimize muscle activation during imaging in order to accurately measure medial elbow properties.


Assuntos
Ligamento Colateral Ulnar/fisiologia , Cotovelo/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Humanos , Masculino , Torque , Punho , Adulto Jovem
2.
J Appl Biomech ; 36(4): 244-248, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396870

RESUMO

Virtual reality (VR) paradigms have proved to be a valid method to challenge and perturb balance. There is little consensus in the literature on the best protocol design to perturb balance and induce postural sway. Current VR interventions still lack a well-defined standardized metric to generate a virtual environment that can perturb balance in an efficacious, lifelike, and repeatable manner. The objective of this study was to investigate different configurations of amplitude and frequency in an anterior-posterior translation VR environment, that is, lifelike and scaled. Thirteen young adults with no conditions affecting balance were recruited. Balance was challenged by anterior-posterior sinusoidal movement of the lab image within the VR headset. Four different amplitudes of the sinusoidal movement were tested: 1, 5, 10, and 20 cm, with each amplitude being presented at 2 test frequencies : 0.5 and 0.25 Hz. Mean center of pressure velocity was significantly greater than baseline at 0.5 Hz and amplitudes of 10 and 20 cm. Mean center of pressure at approximate entropy was greater than baseline at 0.5 Hz and amplitude of 20 cm. The results suggest that sinusoidal movement of a realistic VR environment produces altered balance compared with baseline quiet standing, but only under specific movement parameters.

3.
Int Biomech ; 7(1): 58-65, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33998382

RESUMO

A practice session is common prior to strength testing. However, the benefits of practice have not been previously reported. The purpose of this study was to determine the effect of a practice session on peak torque, mean torque and between trial variability across three test days. We hypothesized that peak and mean torque would be higher and less variable the second and third test days than the first. Twenty-five healthy, young participants completed 3 maximal voluntary isometric and isokinetic knee extensions on three separate days. No difference in isometric torque was found between days 1 and 2, but there was a significant decrease in isokinetic torque (8.45 Nm). There was a significant decrease in both mean isometric and isokinetic torque from day 1 to day 3 (12.67 and 13.59 Nm). Contrary to our hypothesis, no benefit from a practice session was found. Healthy, young adults are able to produce peak knee extensor torques on the first day of testing and do not demonstrate any benefit from additional testing. Thus, a practice day preceding isometric and isokinetic knee extensor strength testing may not be necessary when testing healthy, young participants, and may, in fact, negatively impact subsequent strength measurements.


Assuntos
Contração Isométrica/fisiologia , Articulação do Joelho/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Adolescente , Exercício Físico/fisiologia , Feminino , Humanos , Cinesiologia Aplicada/métodos , Masculino , Dinamômetro de Força Muscular , Reprodutibilidade dos Testes , Torque , Adulto Jovem
4.
Materials (Basel) ; 12(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344797

RESUMO

OBJECTIVE: Titanium mesh is a commonly used material for the reconstruction of orbital floor fractures. However, in some instances, a subsequent inflammatory reaction can occur that causes the adhesion of orbital tissue to the titanium mesh. The adhesion of the orbital soft tissue to the mesh causes diplopia, lid rigidity and extraocular movements restriction. This study was performed to determine if the placement of a collagen membrane over a titanium mesh can prevent the adhesion of orbital soft tissue for an improved clinical outcome. Clinical considerations: A case study was performed investigating 106 patients undergoing a periorbital restoration. Seventy-two patients received a titanium mesh without a barrier membrane, 12 patients received a barrier membrane composed of autologous auricular cartilage to provide a barrier function and 22 patients received a pericardium collagen membrane and titanium mesh. CONCLUSIONS: Titanium has been shown to generate an intense inflammatory reaction in host tissues, which can cause fibrosis to adjacent structures. Fibrosis is an essential factor in the repair of fracture sites, however this can lead to adverse effects in the orbital socket. Fibrosis can cause cicatrization and lower eyelid retraction when induced along the lower orbital rim. An improved outcome can be achieved by using a barrier between the titanium mesh and the soft tissue, such as autogenous auricular cartilage, however, only patients treated with a resorbable collagen membrane to act as a soft tissue barricade during site regeneration, prevented the fibrosis reaction and related problems from occurring.

5.
Materials (Basel) ; 11(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404222

RESUMO

Bioprinting is an emerging field in regenerative medicine. Producing cell-laden, three-dimensional structures to mimic bodily tissues has an important role not only in tissue engineering, but also in drug delivery and cancer studies. Bioprinting can provide patient-specific spatial geometry, controlled microstructures and the positioning of different cell types for the fabrication of tissue engineering scaffolds. In this brief review, the different fabrication techniques: laser-based, extrusion-based and inkjet-based bioprinting, are defined, elaborated and compared. Advantages and challenges of each technique are addressed as well as the current research status of each technique towards various tissue types. Nozzle-based techniques, like inkjet and extrusion printing, and laser-based techniques, like stereolithography and laser-assisted bioprinting, are all capable of producing successful bioprinted scaffolds. These four techniques were found to have diverse effects on cell viability, resolution and print fidelity. Additionally, the choice of materials and their concentrations were also found to impact the printing characteristics. Each technique has demonstrated individual advantages and disadvantages with more recent research conduct involving multiple techniques to combine the advantages of each technique.

6.
Micromachines (Basel) ; 9(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-30393322

RESUMO

Current commercially available barrier membranes for oral surgery have yet to achieve a perfect design. Existing materials used are either non-resorbable and require a second surgery for their extraction, or alternatively are resorbable but suffer from poor structural integrity or degrade into acidic by-products. Silk has the potential to overcome these issues and has yet to be made into a commercially available dental barrier membrane. Reactive inkjet printing (RIJ) has recently been demonstrated to be a suitable method for assembling silk in its regenerated silk fibroin (RSF) form into different constructs. This paper will establish the properties of RSF solutions for RIJ and the suitability of RIJ for the construction of RSF barrier membranes. Printed RSF films were characterised by their crystallinity and surface properties, which were shown to be controllable via RIJ. RSF films degraded in either phosphate buffered saline or protease XIV solutions had degradation rates related to RSF crystallinity. RSF films were also printed with the inclusion of nano-hydroxyapatite (nHA). As reactive inkjet printing could control RSF crystallinity and hence its degradation rate, as well as offering the ability to incorporate bioactive nHA inclusions, reactive inkjet printing is deemed a suitable alternative method for RSF processing and the production of dental barrier membranes.

7.
Eur J Appl Physiol ; 117(5): 943-953, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28280975

RESUMO

PURPOSE: Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. METHODS: Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. RESULTS: The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm3, p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm2, p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. CONCLUSIONS: The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.


Assuntos
Exercício Físico , Músculos Isquiossurais/fisiologia , Força Muscular , Adolescente , Técnicas de Imagem por Elasticidade , Feminino , Músculos Isquiossurais/diagnóstico por imagem , Humanos , Masculino , Adulto Jovem
8.
Motor Control ; 19(1): 60-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25029291

RESUMO

Since vision is used in studies of muscle force control, reduced muscle force control might be related to reduced visual ability. We investigated relationships between steadiness in eye movements and quadriceps muscle torque (a surrogate for force) during isometric contractions of constant and varying torques. Nineteen young adults with an average age of 20.7 years and 18 old adults with an average age of 71.6 years performed three vision tasks, three vision and torque tasks at 40% maximal voluntary contraction (MVC), and three vision and torque tasks at 54 nm. Age groups had identical torque steadiness (CV) in 40%-MVC and 54-nm conditions (p > .05). Old had similar vertical (p > .05) but decreased horizontal visual steadiness (SD) (p < .05) compared with young. Correlations between visual steadiness and muscle torque steadiness failed to show a significant relationship (p > .05). We were unable to identify a substantial relationship between muscle torque steadiness and eye movement, as a component of visual steadiness, and conclude that reduced visual steadiness does not contribute to reduced muscle torque steadiness.


Assuntos
Movimentos Oculares/fisiologia , Músculo Esquelético/fisiologia , Adulto , Fatores Etários , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Contração Muscular/fisiologia , Adulto Jovem
9.
J Biomech ; 47(12): 3050-5, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25039017

RESUMO

Magnetic resonance and ultrasound imaging have shown hamstring strain injuries occur most often in the biceps femoris long head (BFLH), and particularly in the proximal vs. distal region of this muscle. Animal research and musculoskeletal modeling (MSK) have detected heterogeneous fascicle behavior within muscle regions, and within fascicles. Understanding architectural behavior differences during muscle contractions may help to discern possible mechanisms behind proximal BFLH injuries. The purpose of our study was to assess the magnitude of shortening of the proximal and distal fascicles of the BFLH under a range of muscle activation levels under isometric conditions using ultrasound imaging (US). Thirteen healthy adults performed targeted sustained isometric contractions while US were taken of the entire BFLH. Measurements of fascicle lengths in both muscle regions were compared at 20%, 30%, 50%, and 67% MVIC. The results showed that while both regions shortened significantly with activation, the proximal fascicles were significantly longer, regardless of activation level (~38%), and shortened significantly more than the distal fascicles overall (~40%), and cumulatively at higher activation levels (30% and above). No significant strain differences were found between the two regions. These data suggest heterogeneous fascicle behavior exists in an absolute sense; however, differences in behavior are eliminated when normalized (strain). Coupled with MSK literature, the absence of regional fascicle strain differences in this study may indicate strain heterogeneity is not detectable at the whole fascicle level. Further knowledge of this commonly strained muscle's regional behavior during dynamic movements could provide evidence of proximal hamstring strain predisposition.


Assuntos
Fibras Musculares Esqueléticas/diagnóstico por imagem , Fibras Musculares Esqueléticas/fisiologia , Coxa da Perna , Animais , Feminino , Humanos , Contração Isométrica , Masculino , Movimento/fisiologia , Estresse Mecânico , Ultrassonografia , Adulto Jovem
10.
Am J Vet Res ; 74(5): 757-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23627389

RESUMO

OBJECTIVE: To assess differences in sagittal plane joint kinematics and ground reaction forces between lean and obese adult dogs of similar sizes at 2 trotting velocities. ANIMALS: 16 adult dogs. PROCEDURES: Dogs with body condition score (BCS) of 8 or 9 (obese dogs; n = 8) and dogs with BCS of 4 or 5 (lean dogs; 8) on a 9-point scale were evaluated. Sagittal plane joint kinematic and ground reaction force data were obtained from dogs trotting at 1.8 and 2.5 m/s with a 3-D motion capture system, a force platform, and 12 infrared markers placed on bony landmarks. RESULTS: Mean stride lengths for forelimbs and hind limbs at both velocities were shorter in obese than in lean dogs. Stance phase range of motion (ROM) was greater in obese dogs than in lean dogs for shoulder (28.2° vs 20.6°), elbow (23.6° vs 16.4°), hip (27.2° vs 22.9°), and tarsal (38.9° vs 27.9°) joints at both velocities. Swing phase ROM was greater in obese dogs than in lean dogs for elbow (61.2° vs 53.7°) and hip (34.4° vs 29.8°) joints. Increased velocity was associated with increased stance ROM in elbow joints and increased stance and swing ROM in hip joints of obese dogs. Obese dogs exerted greater peak vertical and horizontal ground reaction forces than did lean dogs. Body mass and peak vertical ground reaction force were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Greater ROM detected during the stance phase and greater ground reaction forces in the gait of obese dogs, compared with lean dogs, may cause greater compressive forces within joints and could influence the development of osteoarthritis.


Assuntos
Doenças do Cão/patologia , Marcha/fisiologia , Atividade Motora/fisiologia , Obesidade/veterinária , Animais , Cães
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...