Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Transplantation ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773862

RESUMO

Long-term systemic immunosuppression is needed for vascularized composite allotransplantation (VCA). The high rate of acute rejection episodes in the first posttransplant year, the development of chronic rejection, and the adverse effects that come along with this treatment, currently prevent a wider clinical application of VCA. Opportunistic infections and metabolic disturbances are among the most observed side effects in VCA recipients. To overcome these challenges, local immunosuppression using biomaterial-based drug delivery systems (DDS) have been developed. The aim of these systems is to provide high local concentrations of immunosuppressive drugs while reducing their systemic load. This review provides a summary of recently investigated local DDS with different mechanisms of action such as on-demand, ultrasound-sensitive, or continuous drug delivery. In preclinical models, ranging from rodent to porcine and nonhuman primate models, this approach has been shown to reduce systemic tacrolimus (TAC) load and adverse effects, while prolonging graft survival. Localized immunosuppression using biomaterial-based DDS represents an encouraging approach to enhance graft survival and reduce toxic side effects of immunosuppressive drugs in VCA patients. Preclinical models using TAC-releasing DDS have demonstrated high local immunosuppressive effects with a low systemic burden. However, to reduce acute rejection events in translational animal models or in the clinical reality, the use of additional low-dose systemic TAC treatment may be envisaged. Patients may benefit through efficient graft immunosuppression and survival with negligible systemic adverse effects, resulting in better compliance and quality of life.

2.
Front Bioeng Biotechnol ; 12: 1363126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532882

RESUMO

Background: Seroma formation is a common postoperative complication. Fibrin-based glues are typically employed in an attempt to seal the cavity. Recently, the first nanoparticle (NP)-based treatment approaches have emerged. Nanoparticle dispersions can be used as tissue glues, capitalizing on a phenomenon known as 'nanobridging'. In this process, macromolecules such as proteins physically adsorb onto the NP surface, leading to macroscopic adhesion. Although significant early seroma reduction has been shown, little is known about long-term efficacy of NPs. The aim of this study was to assess the long-term effects of NPs in reducing seroma formation, and to understand their underlying mechanism. Methods: Seroma was surgically induced bilaterally in 20 Lewis rats. On postoperative day (POD) 7, seromas were aspirated on both sides. In 10 rats, one side was treated with NPs, while the contralateral side received only NP carrier solution. In the other 10 rats, one side was treated with fibrin glue, while the other was left untreated. Seroma fluid, blood and tissue samples were obtained at defined time points. Biochemical, histopathological and immunohistochemical assessments were made. Results: NP-treated sides showed no macroscopically visible seroma formation after application on POD 7, in stark contrast to the fibrin-treated sides, where 60% of the rats had seromas on POD 14, and 50% on POD 21. At the endpoint (POD 42), sides treated with nanoparticles (NPs) exhibited significant macroscopic differences compared to other groups, including the absence of a cavity, and increased fibrous adhesions. Histologically, there were more macrophage groupings and collagen type 1 (COL1) deposits in the superficial capsule on NP-treated sides. Conclusion: NPs not only significantly reduced early manifestations of seroma and demonstrated an anti-inflammatory response, but they also led to increased adhesion formation over the long term, suggesting a decreased risk of seroma recurrence. These findings highlight both the adhesive properties of NPs and their potential for clinical therapy.

3.
Xenotransplantation ; 30(5): e12820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37735958

RESUMO

Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TNF𝛼). Using a 2D microfluidic system we investigated the glycocalyx dynamics of genetically modified porcine arterial and venous EC (Gal𝛼1,3 Gal knock-out, transgenic for human CD46 and thrombomodulin, GTKO/hCD46/hTM) after activation with human serum or human TNF𝛼. Interestingly, we observed that GTKO/hCD46/hTM arterial cells, additionally to venous cells, do not shed HS. Unscathed HS on GTKO/hCD46/hTM EC correlated with reduced complement deposition, suggesting that protection against complement activation contributes to maintaining an intact glycocalyx layer on arterial EC. This protection was lost on GTKO/hCD46/hTM cells after simultaneous perfusion with human serum and human TNF𝛼. HS shedding on arterial cells and increased complement deposition on both arterial and venous cells was observed. These findings suggest that GTKO/hCD46/hTM EC revert to a proinflammatory phenotype in an inflammatory xenotransplantation setting, potentially favoring transplant rejection.


Assuntos
Células Endoteliais , Glicocálix , Animais , Humanos , Suínos , Transplante Heterólogo , Animais Geneticamente Modificados , Proteínas do Sistema Complemento
4.
Front Immunol ; 14: 1179195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275912

RESUMO

Background: Joint allotransplantation (JA) within the field of vascularized composite allotransplantation (VCA) holds great potential for functional and non-prosthetic reconstruction of severely damaged joints. However, clinical use of JA remains limited due to the immune rejection associated with all forms of allotransplantation. In this study, we aim to provide a comprehensive overview of the current state of JA through a systematic review of clinical, animal, and immunological studies on this topic. Methods: We conducted a systematic literature review in accordance with the PRISMA guidelines to identify relevant articles in PubMed, Cochrane Library, and Web of Science databases. The results were analyzed, and potential future prospects were discussed in detail. Results: Our review included 14 articles describing relevant developments in JA. Currently, most JA-related research is being performed in small animal models, demonstrating graft survival and functional restoration with short-term immunosuppression. In human patients, only six knee allotransplantations have been performed to date, with all grafts ultimately failing and a maximum graft survival of 56 months. Conclusion: Research on joint allotransplantation has been limited over the last 20 years due to the rarity of clinical applications, the complex nature of surgical procedures, and uncertain outcomes stemming from immune rejection. However, the key to overcoming these challenges lies in extending graft survival and minimizing immunosuppressive side effects. With the emergence of new immunosuppressive strategies, the feasibility and clinical potential of vascularized joint allotransplantation warrants further investigation.


Assuntos
Rejeição de Enxerto , Alotransplante de Tecidos Compostos Vascularizados , Animais , Humanos , Alotransplante de Tecidos Compostos Vascularizados/métodos , Transplante Homólogo , Tolerância Imunológica , Terapia de Imunossupressão/métodos , Imunossupressores
5.
Sci Rep ; 13(1): 4483, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934164

RESUMO

Endothelial dysfunction is an early event of vascular injury defined by a proinflammatory and procoagulant endothelial cell (EC) phenotype. Although endothelial glycocalyx disruption is associated with vascular damage, how various inflammatory stimuli affect the glycocalyx and whether arterial and venous cells respond differently is unknown. Using a 3D round-channel microfluidic system we investigated the endothelial glycocalyx, particularly heparan sulfate (HS), on porcine arterial and venous ECs. Heparan sulfate (HS)/glycocalyx expression was observed already under static conditions on venous ECs while it was flow-dependent on arterial cells. Furthermore, analysis of HS/glycocalyx response after stimulation with inflammatory cues revealed that venous, but not arterial ECs, are resistant to HS shedding. This finding was observed also on isolated porcine vessels. Persistence of HS on venous ECs prevented complement deposition and clot formation after stimulation with tumor necrosis factor α or lipopolysaccharide, whereas after xenogeneic activation no glycocalyx-mediated protection was observed. Contrarily, HS shedding on arterial cells, even without an inflammatory insult, was sufficient to induce a proinflammatory and procoagulant phenotype. Our data indicate that the dimorphic response of arterial and venous ECs is partially due to distinct HS/glycocalyx dynamics suggesting that arterial and venous thrombo-inflammatory disorders require targeted therapies.


Assuntos
Células Endoteliais , Heparitina Sulfato , Animais , Suínos , Células Endoteliais/metabolismo , Heparitina Sulfato/metabolismo , Glicocálix/metabolismo , Artérias/metabolismo , Veias/metabolismo
6.
Front Cardiovasc Med ; 9: 897087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647072

RESUMO

The physiological, anti-inflammatory, and anti-coagulant properties of endothelial cells (ECs) rely on a complex carbohydrate-rich layer covering the luminal surface of ECs, called the glycocalyx. In a range of cardiovascular disorders, glycocalyx shedding causes endothelial dysfunction and inflammation, underscoring the importance of glycocalyx preservation to avoid disease initiation and progression. In this review we discuss the physiological functions of the glycocalyx with particular focus on how loss of endothelial glycocalyx integrity is linked to cardiovascular risk factors, like hypertension, aging, diabetes and obesity, and contributes to the development of thrombo-inflammatory conditions. Finally, we consider the role of glycocalyx components in regulating inflammatory responses and discuss possible therapeutic interventions aiming at preserving or restoring the endothelial glycocalyx and therefore protecting against cardiovascular disease.

7.
Front Cell Dev Biol ; 10: 824851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242762

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in December 2019 as a novel respiratory pathogen and is the causative agent of Corona Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was also found in other tissues, including the vasculature. Individuals with underlying pre-existing co-morbidities like diabetes and hypertension have been more prone to develop severe illness and fatal outcomes during COVID-19. In addition, critical clinical observations made in COVID-19 patients include hypercoagulation, cardiomyopathy, heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic) vascular inflammation. We provide a general overview of SARS-CoV-2, its entry determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical findings on endothelial changes during COVID-19 are reviewed in detail and recent evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2 infection is discussed. We conclude with current notions on the contribution of cardiovascular events to long term consequences of COVID-19, also known as "Long-COVID-syndrome". Altogether, our review provides a detailed overview of the current perspectives of COVID-19 and its influence on the vasculature.

8.
Transplantation ; 105(8): 1747-1759, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34291766

RESUMO

BACKGROUND: The lymphatic system plays an active role in modulating inflammation in autoimmune diseases and organ rejection. In this work, we hypothesized that the transfer of donor lymph node (LN) might be used to promote lymphangiogenesis and influence rejection in vascularized composite allotransplantation (VCA). METHODS: Hindlimb transplantations were performed in which (1) recipient rats received VCA containing donor LN (D:LN+), (2) recipient rats received VCA depleted of all donor LN (D:LN-), and (3) D:LN+ transplantations were followed by lymphangiogenesis inhibition using a vascular endothelial growth factor receptor-3 (VEGFR3) blocker. RESULTS: Our data show that graft rejection started significantly later in D:LN+ transplanted rats as compared to the D:LN- group. Moreover, we observed a higher level of VEGF-C and a quicker and more efficient lymphangiogenesis in the D:LN+ group as compared to the D:LN- group. The presence of donor LN within the graft was associated with reduced immunoactivation in the draining LN and increased frequency of circulating and skin-resident donor T regulatory cells. Blocking of the VEGF-C pathway using a VEGFR3 blocker disrupts the lymphangiogenesis process, accelerates rejection onset, and interferes with donor T-cell migration. CONCLUSIONS: This study demonstrates that VCA LNs play a pivotal role in the regulation of graft rejection and underlines the potential of specifically targeting the LN component of a VCA to control graft rejection.


Assuntos
Rejeição de Enxerto/etiologia , Linfonodos/fisiologia , Linfangiogênese/fisiologia , Fator C de Crescimento do Endotélio Vascular/fisiologia , Animais , Linfonodos/transplante , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Doadores de Tecidos , Transplante Homólogo , Fator C de Crescimento do Endotélio Vascular/análise , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
9.
Xenotransplantation ; 28(1): e12636, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841431

RESUMO

BACKGROUND: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. METHODS: Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient's kidney, liver and coagulation functions. RESULTS: In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. CONCLUSIONS: While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation.


Assuntos
Transplante de Coração , Animais , Xenoenxertos , Papio , Perfusão , Suínos , Transplante Heterólogo
10.
Sci Rep ; 10(1): 17531, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067513

RESUMO

Xenotransplantation using pig organs has achieved survival times up to 195 days in pig orthotopic heart transplantation into baboons. Here we demonstrate that in addition to an improved immunosuppressive regimen, non-ischaemic preservation with continuous perfusion and control of post-transplantation growth of the transplant, prevention of transmission of the porcine cytomegalovirus (PCMV) plays an important role in achieving long survival times. For the first time we demonstrate that PCMV transmission in orthotopic pig heart xenotransplantation was associated with a reduced survival time of the transplant and increased levels of IL-6 and TNFα were found in the transplanted baboon. Furthermore, high levels of tPA-PAI-1 complexes were found, suggesting a complete loss of the pro-fibrinolytic properties of the endothelial cells. These data show that PCMV has an important impact on transplant survival and call for elimination of PCMV from donor pigs.


Assuntos
Infecções por Citomegalovirus/fisiopatologia , Sobrevivência de Enxerto , Transplante de Coração/efeitos adversos , Animais , Animais Geneticamente Modificados , Citomegalovirus/classificação , Infecções por Citomegalovirus/transmissão , Células Endoteliais , Xenoenxertos , Sistema Imunitário , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Interleucina-6/metabolismo , Papio , Suínos , Transplante Heterólogo , Fator de Necrose Tumoral alfa/metabolismo
11.
Mater Sci Eng C Mater Biol Appl ; 117: 111311, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919672

RESUMO

INTRODUCTION: Vascularized nerve grafts (VNG) may offer an advantage in peripheral nerve regeneration by avoiding ischemic damage and central necrosis observed in non-VNG, particularly for the treatment of large and long nerve defects. However, surgical complexity, donor site morbidity and limited nerve availability remain important drawbacks for the clinical use of VNG. Here we explore the potential of perfusion-decellularization for bioengineering a VNG to be used in peripheral nerve reconstruction. METHODS: Porcine sciatic nerves were surgically procured along with their vascular pedicle attached. The specimens were decellularized via perfusion-decellularization and preservation of the extracellular matrix (ECM), vascular patency and tissue cytokine contents were examined. Scaffold reendothelialization was conducted with porcine aortic endothelial cells in a perfusion-bioreactor. RESULTS: Morphologic examination of decellularized VNG and analysis of the DNA content demonstrated cell clearance whereas ECM content and structures of the nerve fascicles were preserved. Using 3D micro-computed tomography imaging we observed optimal vasculature preservation in decellularized scaffolds, down to the capillary level. Cytokine quantification demonstrated measurable levels of growth factors after decellularization. Endothelial cell engraftment of the large caliber vessels was observed in reendothelialized scaffolds. CONCLUSIONS: In this study we provide evidence that perfusion-decellularization can be used to create vascularized nerve scaffolds in which the vasculature and the ECM component are well preserved. As compared to non-vascularized conduits, engineered vascularized nerve scaffolds may represent an ideal approach for promoting better nerve regeneration in larger nerve defect reconstructions.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Células Endoteliais , Matriz Extracelular , Perfusão , Suínos , Microtomografia por Raio-X
12.
Nat Commun ; 11(1): 3890, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753636

RESUMO

Inhibiting thrombosis without generating bleeding risks is a major challenge in medicine. A promising solution may be the inhibition of coagulation factor XII (FXII), because its knock-out or inhibition in animals reduced thrombosis without causing abnormal bleeding. Herein, we have engineered a macrocyclic peptide inhibitor of activated FXII (FXIIa) with sub-nanomolar activity (Ki = 370 ± 40 pM) and a high stability (t1/2 > 5 days in plasma), allowing for the preclinical evaluation of a first synthetic FXIIa inhibitor. This 1899 Da molecule, termed FXII900, efficiently blocks FXIIa in mice, rabbits, and pigs. We found that it reduces ferric-chloride-induced experimental thrombosis in mice and suppresses blood coagulation in an extracorporeal membrane oxygenation (ECMO) setting in rabbits, all without increasing the bleeding risk. This shows that FXIIa activity is controllable in vivo with a synthetic inhibitor, and that the inhibitor FXII900 is a promising candidate for safe thromboprotection in acute medical conditions.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Fator XIIa/antagonistas & inibidores , Peptídeos Cíclicos/efeitos dos fármacos , Trombose/prevenção & controle , Animais , Cloretos/efeitos adversos , Clonagem Molecular , Modelos Animais de Doenças , Descoberta de Drogas , Oxigenação por Membrana Extracorpórea/métodos , Fator XII/antagonistas & inibidores , Feminino , Compostos Férricos/efeitos adversos , Humanos , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coelhos , Proteínas Recombinantes/farmacologia , Suínos
13.
J Heart Lung Transplant ; 39(8): 751-757, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32527674

RESUMO

BACKGROUND: The demand for donated human hearts far exceeds the number available. Xenotransplantation of genetically modified porcine organs provides an alternative. In 2000, an Advisory Board of the International Society for Heart and Lung Transplantation set the benchmark for commencing clinical cardiac xenotransplantation as consistent 60% survival of non-human primates after life-supporting porcine heart transplantations. Recently, we reported the stepwise optimization of pig-to-baboon orthotopic cardiac xenotransplantation finally resulting in consistent success, with 4 recipients surviving 90 (n = 2), 182, and 195 days. Here, we report on 4 additional recipients, supporting the efficacy of our procedure. RESULTS: The first 2 additional recipients succumbed to porcine cytomegalovirus (PCMV) infections on Days 15 and 27, respectively. In 2 further experiments, PCMV infections were successfully avoided, and 3-months survival was achieved. Throughout all the long-term experiments, heart, liver, and renal functions remained within normal ranges. Post-mortem cardiac diameters were slightly increased when compared with that at the time of transplantation but with no detrimental effect. There were no signs of thrombotic microangiopathy. The current regimen enabled the prolonged survival and function of orthotopic cardiac xenografts in altogether 6 of 8 baboons, of which 4 were now added. These results exceed the threshold set by the Advisory Board of the International Society for Heart and Lung Transplantation. CONCLUSIONS: The results of our current and previous experimental cardiac xenotransplantations together fulfill for the first time the pre-clinical efficacy suggestions. PCMV-positive donor animals must be avoided.


Assuntos
Rejeição de Enxerto/etiologia , Transplante de Coração/métodos , Doadores de Tecidos , Animais , Sobrevivência de Enxerto , Humanos , Suínos , Transplante Heterólogo
14.
Methods Mol Biol ; 2110: 83-97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002903

RESUMO

Endothelial cells (EC) play a crucial role in the pathophysiology of cardiovascular diseases, ischemia/reperfusion injury, and graft rejection in (xeno-)transplantation. In such nonphysiological conditions, EC are known to lose their quiescent phenotype and switch into an actively pro-inflammatory, procoagulant, and anti-fibrinolytic state. This case happens essentially because the endothelial glycocalyx-a layer of proteoglycans and glycoproteins covering the luminal surface of the endothelium-is shed. Heparan sulfate, one of the main components of the endothelial glycocalyx, contributes to its negative charge. In addition, many plasma proteins such as antithrombin III, superoxide dismutase, C1 inhibitor, and growth factors and cytokines bind to heparan sulfate and by this scenario contribute to the establishment of an anticoagulant and anti-inflammatory endothelial surface. Shedding of the glycocalyx results in a loss of plasma proteins from the endothelial surface, and this phenomenon causes the switch in phenotype. Particularly in xenotransplantation, both hyperacute and acute vascular rejection are characterized by coagulation dysregulation, a situation in which EC are the main players.Since many years, EC have been used in vitro in 2D flatbed cell culture models, with or without the application of shear stress. Such models have also been used to assess the effect of human transgenes on complement- and coagulation-mediated damage of porcine EC in the context of xenotransplantation. The methods described in this chapter include the analysis of endothelial cell-blood interactions without the necessity of using anticoagulants as the increased EC surface-to-volume ratio allows for natural anticoagulation of blood. Furthermore, this chapter contains the description of a novel microfluidic in vitro model carrying important features of small blood vessels, such as a 3D round-section geometry, shear stress, and pulsatile flow-all this in a closed circuit, recirculating system aiming at reproducing closely the in vivo situation in small vessels.


Assuntos
Anti-Inflamatórios/metabolismo , Anticoagulantes/metabolismo , Técnicas de Cultura de Células , Células Endoteliais/metabolismo , Animais , Bioensaio , Biomarcadores , Células Cultivadas , Imunofluorescência , Humanos , Microfluídica/métodos , Microesferas , Esferoides Celulares , Transplante Heterólogo
15.
Artigo em Inglês | MEDLINE | ID: mdl-32014849

RESUMO

OBJECTIVE: To explore the repertoire of glycan-specific immunoglobulin G (IgG) antibodies in treatment-naive patients with relapsing-remitting multiple sclerosis (RRMS). METHODS: A systems-level approach combined with glycan array technologies was used to determine specificities and binding reactivities of glycan-specific IgGs in treatment-naive patients with RRMS compared with patients with noninflammatory and other inflammatory neurologic diseases. RESULTS: We identified a unique signature of glycan-binding IgG in MS with high reactivities to the dietary xenoglycan N-glycolylneuraminic acid (Neu5Gc) and the self-glycan N-acetylneuraminic acid (Neu5Ac). Increased reactivities of serum IgG toward Neu5Gc and Neu5Ac were additionally observed in an independent, treatment-naive cohort of patients with RRMS. CONCLUSION: Patients with MS show increased IgG reactivities to structurally related xenogeneic and human neuraminic acids. The discovery of these glycan-specific epitopes as immune targets and potential biomarkers in MS merits further investigation.


Assuntos
Autoanticorpos/metabolismo , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Ácido N-Acetilneuramínico/imunologia , Ácidos Neuramínicos/imunologia , Adulto , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Biomarcadores , Epitopos , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/líquido cefalorraquidiano , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico
16.
Xenotransplantation ; 27(5): e12585, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32056300

RESUMO

The activation of the endothelial surface in xenografts is still a poorly understood process and the consequences are unpredictable. The role of Ca2+ -messaging during the activation of endothelial cells is well recognized and routinely measured by synthetic Ca2+ -sensitive fluorophors. However, these compounds require fresh loading immediately before each experiment and in particular when grown in state-of-the-art 3D cell culture systems, endothelial cells are difficult to access with such sensors. Therefore, we developed transgenic pigs expressing a Ca2+ -sensitive protein and examined its principal characteristics. Primary transgenic endothelial cells stimulated by ATP showed a definite and short influx of Ca2+ into the cytosol, whereas exposure to human serum resulted in a more intense and sustained response. Surprisingly, not all endothelial cells reacted identically to a stimulus, rather activation took place in adjacent cells in a timely decelerated way and with distinct intensities. This effect was again more pronounced when cells were stimulated with human serum. Finally, we show clear evidence that antibody binding alone significantly activated endothelial cells, whereas antibody depletion dramatically reduced the stimulatory potential of serum. Transgenic porcine endothelial cells expressing a Ca2+ -sensor represent an interesting tool to dissect factors inducing activation of porcine endothelial cells after exposure to human blood or serum.


Assuntos
Sinalização do Cálcio , Células Endoteliais , Soro , Animais , Animais Geneticamente Modificados , Cálcio , Células Cultivadas , Células Endoteliais/citologia , Humanos , Suínos , Transplante Heterólogo
17.
Xenotransplantation ; 27(1): e12560, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591751

RESUMO

BACKGROUND: Cell surface carbohydrate antigens play a major role in the rejection of porcine xenografts. The most important for human recipients are α-1,3 Gal (Galactose-alpha-1,3-galactose) causing hyperacute rejection, also Neu5Gc (N-glycolylneuraminic acid) and Sd(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class I (SLA-I). We previously demonstrated efficient generation of pigs with multiple xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoreactive antigen genes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS: Multiplex CRISPR/Cas9 gene editing and somatic cell nuclear transfer were used to generate pigs carrying functional knockouts of GGTA1, CMAH, B4GALNT2 and SLA class I. Fibroblasts derived from one- to four-fold knockout animals, and from multi-transgenic cells (human CD46, CD55, CD59, HO1 and A20) with the four-fold knockout were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS: Pigs were generated carrying four-fold knockouts of important xenoreactive genes. In vitro assays revealed that combination of all four gene knockouts reduced human IgG and IgM binding to porcine kidney cells more effectively than single or double knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation to such an extent that further knockouts had no significant additional effect. CONCLUSION: We showed that pigs carrying several xenoprotective transgenes and knockouts of xenoreactive antigens can be readily generated and these modifications will have significant effects on xenograft survival.


Assuntos
Galactosiltransferases/genética , Rejeição de Enxerto/imunologia , Transplante de Rim , Oxigenases de Função Mista/genética , N-Acetilgalactosaminiltransferases/genética , Animais , Anticorpos Heterófilos/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Proteínas do Sistema Complemento/metabolismo , Antígenos HLA/imunologia , Xenoenxertos/imunologia , Antígenos de Histocompatibilidade Classe I , Humanos , Suínos , Transplante Heterólogo
18.
Blood ; 134(22): 1941-1950, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31537530

RESUMO

Immune system failure in primary antibody deficiencies (PADs) has been linked to recurrent infections, autoimmunity, and cancer, yet clinical judgment is often based on the reactivity to a restricted panel of antigens. Previously, we demonstrated that the human repertoire of carbohydrate-specific immunoglobulin G (IgG) exhibits modular organization related to glycan epitope structure. The current study compares the glycan-specific IgG repertoires between different PAD entities. Distinct repertoire profiles with extensive qualitative glycan-recognition defects were observed, which are characterized by the common loss of Galα and GalNAc reactivity and disease-specific recognition of microbial antigens, self-antigens, and tumor-associated carbohydrate antigens. Antibody repertoire analysis may provide a useful tool to elucidate the degree and the clinical implications of immune system failure in individual patients.


Assuntos
Autoantígenos/imunologia , Carboidratos/imunologia , Epitopos/imunologia , Imunoglobulina G/imunologia , Doenças da Imunodeficiência Primária/imunologia , Feminino , Humanos , Masculino
19.
Sci Rep ; 9(1): 9269, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239498

RESUMO

Vascularized composite allotransplantation (VCA), such as hand and face transplantation, is emerging as a potential solution in patients that suffered severe injuries. However, adverse effects of chronic high-dose immunosuppression regimens strongly limit the access to these procedures. In this study, we developed an in situ forming implant (ISFI) loaded with rapamycin to promote VCA acceptance. We hypothesized that the sustained delivery of low-dose rapamycin in proximity to the graft may promote graft survival and induce an immunoregulatory microenvironment, boosting the expansion of T regulatory cells (Treg). In vitro and in vivo analysis of rapamycin-loaded ISFI (Rapa-ISFI) showed sustained drug release with subtherapeutic systemic levels and persistent tissue levels. A single injection of Rapa-ISFI in the groin on the same side as a transplanted limb significantly prolonged VCA survival. Moreover, treatment with Rapa-ISFI increased the levels of multilineage mixed chimerism and the frequency of Treg both in the circulation and VCA-skin. Our study shows that Rapa-ISFI therapy represents a promising approach for minimizing immunosuppression, decreasing toxicity and increasing patient compliance. Importantly, the use of such a delivery system may favor the reprogramming of allogeneic responses towards a regulatory function in VCA and, potentially, in other transplants and inflammatory conditions.


Assuntos
Aloenxertos Compostos/efeitos dos fármacos , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Membro Posterior/transplante , Sirolimo/farmacologia , Linfócitos T Reguladores/imunologia , Alotransplante de Tecidos Compostos Vascularizados/efeitos adversos , Animais , Aloenxertos Compostos/imunologia , Aloenxertos Compostos/patologia , Sistemas de Liberação de Medicamentos , Imunossupressores/farmacologia , Masculino , Ratos , Ratos Endogâmicos Lew , Quimeras de Transplante , Tolerância ao Transplante/imunologia
20.
PLoS One ; 14(4): e0214674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943234

RESUMO

PURPOSE: Various profibrotic and proinflammatory cytokines have been found upregulated in uncomplicated primary retinal detachment (pRD), but without providing a uniform picture. Here, we compare the cyto- and chemokine profiles in pRD with and without proliferative vitreoretinopathy (PVR) in an attempt to unravel relevant differences not in single cytokines, but in the cytokine profiles at diagnosis. METHODS: Undiluted vitreous fluid (VF) was obtained at the beginning of surgery from 174 eyes with pRD without relevant PVR (maximally grade B; group 1; n = 81) and with moderate or advanced PVR requiring a gas tamponade (group 2; n = 49) or silicon oil filling (group 3; n = 44). VF of eyes undergoing macular hole (MH) surgery served as controls (group 4; n = 26). Forty-three cytokines were quantified in parallel using a multiplex cytokine analysis system (Bioplex). For all comparisons we applied Holm's correction to control for multiple comparisons. RESULTS: 44.9% of group 2 eyes presented grade C1 and 55.1% C2-C3, whereas 86.4% of group 3 eyes exhibited a PVR grade of C2-D. CCL19 was the only cytokine that displayed higher concentrations in the vitreous of eyes with PVR C1 compared to lower PVR grades. Eyes with PVR C2-D showed higher levels of CCL27, CXCL6, IL4, IL16, CXCL10, CCL8, CCL22, MIG/CXCL9, CCL15, CCL19, CCL 23 and CXCL12 compared to controls. Interestingly, no difference of cytokine levels was detected between C1 and C2-D PVR. CONCLUSIONS: CCL19 may represent a potential biomarker for early PVR progression that holds promise for future diagnostic and therapeutic applications.


Assuntos
Citocinas/metabolismo , Descolamento Retiniano/metabolismo , Vitreorretinopatia Proliferativa/metabolismo , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Descolamento Retiniano/complicações , Vitreorretinopatia Proliferativa/complicações , Vitreorretinopatia Proliferativa/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...