Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 10(1): 96, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739571

RESUMO

BACKGROUND: Bariatric surgery remains the most effective therapy for adiposity reduction and remission of type 2 diabetes. Although different bariatric procedures associate with pronounced shifts in the gut microbiota, their functional role in the regulation of energetic and metabolic benefits achieved with the surgery are not clear. METHODS: To evaluate the causal as well as the inherent therapeutic character of the surgery-altered gut microbiome in improved energy and metabolic control in diet-induced obesity, an antibiotic cocktail was used to eliminate the gut microbiota in diet-induced obese rats after gastric bypass surgery, and gastric bypass-shaped gut microbiota was transplanted into obese littermates. Thorough metabolic profiling was combined with omics technologies on samples collected from cecum and plasma to identify adaptions in gut microbiota-host signaling, which control improved energy balance and metabolic profile after surgery. RESULTS: In this study, we first demonstrate that depletion of the gut microbiota largely reversed the beneficial effects of gastric bypass surgery on negative energy balance and improved glucolipid metabolism. Further, we show that the gastric bypass-shaped gut microbiota reduces adiposity in diet-induced obese recipients by re-activating energy expenditure from metabolic active brown adipose tissue. These beneficial effects were linked to improved glucose homeostasis, lipid control, and improved fatty liver disease. Mechanistically, these effects were triggered by modulation of taurine metabolism by the gastric bypass gut microbiota, fostering an increased abundance of intestinal and circulating taurine-conjugated bile acid species. In turn, these bile acids activated gut-restricted FXR and systemic TGR5 signaling to stimulate adaptive thermogenesis. CONCLUSION: Our results establish the role of the gut microbiome in the weight loss and metabolic success of gastric bypass surgery. We here identify a signaling cascade that entails altered bile acid receptor signaling resulting from a collective, hitherto undescribed change in the metabolic activity of a cluster of bacteria, thereby readjusting energy imbalance and metabolic disease in the obese host. These findings strengthen the rationale for microbiota-targeted strategies to improve and refine current therapies of obesity and metabolic syndrome. Video Abstract Bariatric Surgery (i.e. RYGB) or the repeated fecal microbiota transfer (FMT) from RYGB donors into DIO (diet-induced obesity) animals induces shifts in the intestinal microbiome, an effect that can be impaired by oral application of antibiotics (ABx). Our current study shows that RYGB-dependent alterations in the intestinal microbiome result in an increase in the luminal and systemic pool of Taurine-conjugated Bile acids (TCBAs) by various cellular mechanisms acting in the intestine and the liver. TCBAs induce signaling via two different receptors, farnesoid X receptor (FXR, specifically in the intestines) and the G-protein-coupled bile acid receptor TGR5 (systemically), finally resulting in metabolic improvement and advanced weight management. BSH, bile salt hydrolase; BAT brown adipose tissue.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Microbiota , Tecido Adiposo/metabolismo , Animais , Ácidos e Sais Biliares , Glicemia , Dieta , Obesidade/metabolismo , Obesidade/cirurgia , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Taurina , Termogênese
2.
Ecol Lett ; 22(12): 2097-2102, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617283

RESUMO

Maximising survival requires animals to balance the competing demands of maintaining energy balance and avoiding predation. Here, quantitative modelling shows that optimising the daily timing of activity and rest based on the encountered environmental conditions enables small mammals to maximise survival. Our model shows that nocturnality is typically beneficial when predation risk is higher during the day than during the night, but this is reversed by the energetic benefit of diurnality when food becomes scarce. Empirical testing under semi-natural conditions revealed that the daily timing of activity and rest in mice exposed to manipulations in energy availability and perceived predation risk is in line with the model's predictions. Low food availability and decreased perceived daytime predation risk promote diurnal activity patterns. Overall, our results identify temporal niche switching in small mammals as a strategy to maximise survival in response to environmental changes in food availability and perceived predation risk.


Assuntos
Ritmo Circadiano , Metabolismo Energético , Animais , Alimentos , Mamíferos , Camundongos
3.
Philos Trans R Soc Lond B Biol Sci ; 372(1734)2017 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-28993498

RESUMO

Under natural conditions, many aspects of the abiotic and biotic environment vary with time of day, season or even era, while these conditions are typically kept constant in laboratory settings. The timing information contained within the environment serves as critical timing cues for the internal biological timing system, but how this system drives daily rhythms in behaviour and physiology may also depend on the internal state of the animal. The disparity between timing of these cues in natural and laboratory conditions can result in substantial differences in the scheduling of behaviour and physiology under these conditions. In nature, temporal coordination of biological processes is critical to maximize fitness because they optimize the balance between reproduction, foraging and predation risk. Here we focus on the role of peripheral circadian clocks, and the rhythms that they drive, in enabling adaptive phenotypes. We discuss how reproduction, endocrine activity and metabolism interact with peripheral clocks, and outline the complex phenotypes arising from changes in this system. We conclude that peripheral timing is critical to adaptive plasticity of circadian organization in the field, and that we must abandon standard laboratory conditions to understand the mechanisms that underlie this plasticity which maximizes fitness under natural conditions.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Sinais (Psicologia) , Animais , Meio Ambiente , Tempo
4.
J Exp Biol ; 220(Pt 5): 738-749, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250173

RESUMO

The Darwinian fitness of mammals living in a rhythmic environment depends on endogenous daily (circadian) rhythms in behavior and physiology. Here, we discuss the mechanisms underlying the circadian regulation of physiology and behavior in mammals. We also review recent efforts to understand circadian flexibility, such as how the phase of activity and rest is altered depending on the encountered environment. We explain why shifting activity to the day is an adaptive strategy to cope with energetic challenges and show how this can reduce thermoregulatory costs. A framework is provided to make predictions about the optimal timing of activity and rest of non-model species for a wide range of habitats. This Review illustrates how the timing of daily rhythms is reciprocally linked to energy homeostasis, and it highlights the importance of this link in understanding daily rhythms in physiology and behavior.


Assuntos
Ritmo Circadiano , Metabolismo Energético , Homeostase , Sono , Núcleo Supraquiasmático/fisiologia , Vigília , Animais , Regulação da Temperatura Corporal , Humanos , Temperatura
5.
J Exp Biol ; 218(Pt 16): 2585-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26290592

RESUMO

Endogenous daily (circadian) rhythms allow organisms to anticipate daily changes in the environment. Most mammals are specialized to be active during the night (nocturnal) or day (diurnal). However, typically nocturnal mammals become diurnal when energetically challenged by cold or hunger. The circadian thermo-energetics (CTE) hypothesis predicts that diurnal activity patterns reduce daily energy expenditure (DEE) compared with nocturnal activity patterns. Here, we tested the CTE hypothesis by quantifying the energetic consequences of relevant environmental factors in mice. Under natural conditions, diurnality reduces DEE by 6-10% in energetically challenged mice. Combined with night-time torpor, as observed in mice under prolonged food scarcity, DEE can be reduced by ∼20%. The dominant factor determining the energetic benefit of diurnality is thermal buffering provided by a sheltered resting location. Compared with nocturnal animals, diurnal animals encounter higher ambient temperatures during both day and night, leading to reduced thermogenesis costs in temperate climates. Analysis of weather station data shows that diurnality is energetically beneficial on almost all days of the year in a temperate climate region. Furthermore, diurnality provides energetic benefits at all investigated geographical locations on European longitudinal and latitudinal transects. The reduction of DEE by diurnality provides an ultimate explanation for temporal niche switching observed in typically nocturnal small mammals under energetically challenging conditions. Diurnality allows mammals to compensate for reductions in food availability and temperature as it reduces energetic needs. The optimal circadian organization of an animal ultimately depends on the balance between energetic consequences and other fitness consequences of the selected temporal niche.


Assuntos
Metabolismo Energético , Comportamento de Nidação/fisiologia , Animais , Comportamento Animal , Ritmo Circadiano , Clima , Europa (Continente) , Masculino , Camundongos , Temperatura
6.
Proc Natl Acad Sci U S A ; 111(42): 15256-60, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288753

RESUMO

The mammalian circadian system synchronizes daily timing of activity and rest with the environmental light-dark cycle. Although the underlying molecular oscillatory mechanism is well studied, factors that influence phenotypic plasticity in daily activity patterns (temporal niche switching, chronotype) are presently unknown. Molecular evidence suggests that metabolism may influence the circadian molecular clock, but evidence at the level of the organism is lacking. Here we show that a metabolic challenge by cold and hunger induces diurnality in otherwise nocturnal mice. Lowering ambient temperature changes the phase of circadian light-dark entrainment in mice by increasing daytime and decreasing nighttime activity. This effect is further enhanced by simulated food shortage, which identifies metabolic balance as the underlying common factor influencing circadian organization. Clock gene expression analysis shows that the underlying neuronal mechanism is downstream from or parallel to the main circadian pacemaker (the hypothalamic suprachiasmatic nucleus) and that the behavioral phenotype is accompanied by phase adjustment of peripheral tissues. These findings indicate that nocturnal mammals can display considerable plasticity in circadian organization and may adopt a diurnal phenotype when energetically challenged. Our previously defined circadian thermoenergetics hypothesis proposes that such circadian plasticity, which naturally occurs in nocturnal mammals, reflects adaptive maintenance of energy balance. Quantification of energy expenditure shows that diurnality under natural conditions reduces thermoregulatory costs in small burrowing mammals like mice. Metabolic feedback on circadian organization thus provides functional benefits by reducing energy expenditure. Our findings may help to clarify relationships between sleep-wake patterns and metabolic phenotypes in humans.


Assuntos
Ritmo Circadiano/fisiologia , Temperatura Baixa , Fome , Núcleo Supraquiasmático/fisiologia , Animais , Comportamento Animal , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos CBA , Neurobiologia , Plasticidade Neuronal , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/fisiologia , Fotoperíodo , Temperatura
7.
Curr Biol ; 24(13): R602-5, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25004363

RESUMO

Deep hibernators that spend winter in a hypothermic coma below ground can still emerge and reproduce in spring at the right moment. A recent study shows that specific cells of the pituitary may harbor the internal calendar responsible for this.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Relógios Biológicos/fisiologia , Hibernação/fisiologia , Modelos Biológicos , Fotoperíodo , Hipófise/metabolismo , Estações do Ano , Animais , Dinoflagellida/fisiologia , Gonadotropinas/metabolismo , Roedores/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...