Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 17109-17119, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530402

RESUMO

The analysis of low-abundance protein molecules in human serum is reported based on counting of the individual affinity-captured analyte on a solid sensor surface, yielding a readout format similar to digital assays. In this approach, a sandwich immunoassay with rolling circle amplification (RCA) is used for single molecule detection (SMD) through associating the target analyte with spatially distinct bright spots observed by fluorescence microscopy. The unspecific interaction of the target analyte and other immunoassay constituents with the sensor surface is of particular interest in this work, as it ultimately limits the performance of this assay. It is minimized by the design of the respective biointerface and thiol self-assembled monolayer with oligoethylene (OEG) head groups, and a poly[oligo(ethylene glycol) methacrylate] (pHOEGMA) antifouling polymer brush was used for the immobilization of the capture antibody (cAb) on the sensor surface. The assay relying on fluorescent postlabeling of long single-stranded DNA that are grafted from the detection antibody (dAb) by RCA was established with the help of combined surface plasmon resonance and surface plasmon-enhanced fluorescence monitoring of reaction kinetics. These techniques were employed for in situ measurements of conjugating of cAb to the sensor surface, tagging of short single-stranded DNA to dAb, affinity capture of the target analyte from the analyzed liquid sample, and the fluorescence readout of the RCA product. Through mitigation of adsorption of nontarget molecules on the sensor surface by tailoring of the antifouling biointerface, optimizing conjugation chemistry, and by implementing weak Coulombic repelling between dAb and the sensor surface, the limit of detection (LOD) of the assay was substantially improved. For the chosen interleukin-6 biomarker, SMD assay with LOD at a concentration of 4.3 fM was achieved for model (spiked) samples, and validation of the ability of detection of standard human serum samples is demonstrated.


Assuntos
DNA de Cadeia Simples , Ressonância de Plasmônio de Superfície , Humanos , Ressonância de Plasmônio de Superfície/métodos
2.
Macromol Biosci ; : e2300558, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350051

RESUMO

Prevention of fouling from proteins in blood plasma attracts significant efforts, and great progress is made in identifying surface coatings that display antifouling properties. In particular, poly(ethylene glycol) (PEG) is widely used and dense PEG-like cylindrical brushes of poly[oligo(ethylene glycol) methacrylate] (poly(OEGMA)) can drastically reduce blood plasma fouling. Herein, a comprehensive study of the variation of blood plasma fouling on this surface, including the analysis of the composition of protein deposits on poly(OEGMA) coatings after contact with blood plasma from many different donors, is reported. Correlation between the plasma fouling behavior and protein deposit composition points to the activation of the complement system as the main culprit of dramatically increased and accelerated deposition of blood plasma proteins on this type of antifouling coating, specifically through the classical pathway. These findings are consistent with observations on PEGylated drug carriers and highlight the importance of understanding the potential interactions between antifouling coatings and their environment.

3.
Eur J Pharm Biopharm ; 193: 274-284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924853

RESUMO

The modification of biomaterial surfaces has become increasingly relevant in the context of ongoing advancements in tissue engineering applications and the development of tissue-mimicking polymer materials. In this study, we investigated the layer-by-layer (LbL) deposition of polyelectrolyte multilayer protein reservoirs consisting of poly-l-lysine (PLL) and hyaluronic acid (HA) on the hydrophobic surface of poly(glycerol sebacate) (PGS) elastomer. Using the methods of isothermal titration calorimetry and surface plasmon resonance, we systematically investigated the interactions between the polyelectrolytes and evaluated the deposition process in real time, providing insight into the phenomena associated with film assembly. PLL/HA LbL films deposited on PGS showed an exceptional ability to incorporate bone morphogenetic protein-2 (BMP-2) compared to other growth factors tested, thus highlighting the potential of PLL/HA LbL films for osteoregenerative applications. The concentration of HA solution used for film assembly did not affect the thickness and topography of the (PLL/HA)10 films, but had a notable impact on the hydrophilicity of the PGS surface and the BMP-2 release kinetics. The release kinetics were successfully described using the Weibull model and hyperbolic tangent function, underscoring the potential of these less frequently used models to compare the protein release from LbL protein reservoirs.


Assuntos
Ácido Hialurônico , Polilisina , Ácido Hialurônico/química , Polilisina/química , Nanopartículas em Multicamadas , Polímeros , Polieletrólitos
4.
Int J Nanomedicine ; 18: 595-610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760757

RESUMO

Introduction: The formation of diabetic ulcers (DU) is a common complication for diabetic patients resulting in serious chronic wounds. There is therefore, an urgent need for complex treatment of this problem. This study examines a bioactive wound dressing of a biodegradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) covered by a thin fibrin layer for sustained delivery of bioactive molecules. Methods: Electrospun PLCL/PCL nanofibers were coated with fibrin-based coating prepared by a controlled technique and enriched with human platelet lysate (hPL), fibroblast growth factor 2 (FGF), and vascular endothelial growth factor (VEGF). The coating was characterized by scanning electron microscopy and fluorescent microscopy. Protein content and its release rate and the effect on human saphenous vein endothelial cells (HSVEC) were evaluated. Results: The highest protein amount is achieved by the coating of PLCL/PCL with a fibrin mesh containing 20% v/v hPL (NF20). The fibrin coating serves as an excellent scaffold to accumulate bioactive molecules from hPL such as PDGF-BB, fibronectin (Fn), and α-2 antiplasmin. The NF20 coating shows both fast and a sustained release of the attached bioactive molecules (Fn, VEGF, FGF). The dressing significantly increases the viability of human saphenous vein endothelial cells (HSVECs) cultivated on a collagen-based wound model. The exogenous addition of FGF and VEGF during the coating procedure further increases the HSVECs viability. In addition, the presence of α-2 antiplasmin significantly stabilizes the fibrin mesh and prevents its cleavage by plasmin. Discussion: The NF20 coating supplemented with FGF and VEGF provides a promising wound dressing for the complex treatment of DU. The incorporation of various bioactive molecules from hPL and growth factors has great potential to support the healing processes by providing appropriate stimuli in the chronic wound.


Assuntos
Nanofibras , Fator A de Crescimento do Endotélio Vascular , Humanos , alfa 2-Antiplasmina , Poliésteres/farmacologia , Células Endoteliais , Cicatrização , Bandagens
5.
Macromol Biosci ; 22(11): e2200247, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35917216

RESUMO

Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.


Assuntos
Incrustação Biológica , Trombose , Humanos , Adsorção , Polímeros/química , Incrustação Biológica/prevenção & controle , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Proteínas , Propriedades de Superfície
6.
PLoS One ; 17(1): e0262484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35007303

RESUMO

BACKGROUND: Extracellular vesicles are released into body fluids from the majority of, if not all, cell types. Because their secretion and specific cargo (e.g., proteins) varies according to pathology, extracellular vesicles may prove a rich source of biomarkers. However, their biological and pathophysiological functions are poorly understood in hematological malignancies. OBJECTIVE: Here, we investigated proteome changes in the exosome-rich fraction of the plasma of myelodysplastic syndrome patients and healthy donors. METHODS: Exosome-rich fraction of the plasma was isolated using ExoQuick™: proteomes were compared and statistically processed; proteins were identified by nanoLC-MS/MS and verified using the ExoCarta and QuickGO databases. Mann-Whitney and Spearman analyses were used to statistically analyze the data. 2D western blot was used to monitor clusterin proteoforms. RESULTS: Statistical analyses of the data highlighted clusterin alterations as the most significant. 2D western blot showed that the clusterin changes were caused by posttranslational modifications. Moreover, there was a notable increase in the clusterin proteoform in the exosome-rich fraction of plasma of patients with more severe myelodysplastic syndrome; this corresponded with a simultaneous decrease in their plasma. CONCLUSIONS: This specific clusterin proteoform seems to be a promising biomarker for myelodysplastic syndrome progression.


Assuntos
Biomarcadores/sangue , Vesículas Extracelulares/metabolismo , Síndromes Mielodisplásicas/patologia , Proteoma/metabolismo , Proteômica/métodos , Idoso , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Masculino , Síndromes Mielodisplásicas/metabolismo , Proteoma/análise , Espectrometria de Massas em Tandem
7.
Cardiovasc Intervent Radiol ; 45(2): 236-243, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34913987

RESUMO

PURPOSE: Due to thromboembolic complications and in-stent-stenosis after flow diverter (FD) treatment, the long-term use of dual antiplatelet treatment (DAPT) is mandatory. The tested nano-coating has been shown to reduce material thrombogenicity and promote endothelial cell proliferation in vitro. We compared the biocompatibility of coated (Derivo Heal) and non-coated (Derivo bare) FDs with DAPT in an animal model. METHODS: Derivo® bare (n = 10) and Derivo® Heal (n = 10) FD were implanted in the common carotid arteries (CCAs) of New Zealand white rabbits. One additional FD, alternately a Derivo bare (n = 5) or Derivo Heal (n = 5), was implanted in the abdominal aorta (AA) for assessment of the patency of branch arteries. Histopathological examinations were performed after 28 days. Angiography was performed before and after FD implantation and at follow-up. RESULTS: Statistical analysis of the included specimens showed complete endothelialization of all FDs with no significant differences in neointima thickness between Derivo® bare and Derivo® Heal (CCA: p = 0.91; AA: p = 0.59). A significantly reduced number of macrophages in the vessel wall of the Derivo Heal was observed for the CCA (p = 0.02), and significantly reduced fibrin and platelet deposition on the surface of the Derivo Heal was observed for the AA. All branch arteries of the stented aorta remained patent. CONCLUSION: In this animal model, the novel fibrin-based coated FD showed a similar blood and tissue compatibility as the non-coated FD.


Assuntos
Fibrina , Stents , Animais , Plaquetas , Artéria Carótida Primitiva , Materiais Revestidos Biocompatíveis , Neointima , Coelhos
8.
Macromol Biosci ; 22(3): e2100460, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959255

RESUMO

Non-specific protein adsorption (fouling) triggers a number of deleterious events in the application of biomaterials. Antifouling polymer brushes successfully suppress fouling, however for some coatings an extremely high variability of fouling for different donors remains unexplained. The authors report that in the case of poly(2-hydroxyethyl methacrylate) (poly(HEMA)) this variability is due to the complement system activation that causes massive acceleration in the fouling kinetics of blood plasma. Using plasma from various donors, the fouling kinetics on poly(HEMA) is analyzed and correlated with proteins identified in the deposits on the surface and with the biochemical compositions of the plasma. The presence of complement components in fouling deposits and concentrations of C3a in different plasmas indicate that the alternative complement pathway plays a significant role in the fouling on poly(HEMA) through the "tick-over" mechanism of spontaneous C3 activation. The generated C3b binds to the poly(HEMA) surface and amplifies complement activation locally. Heat-inactivated plasma prevents accelerated fouling kinetics, confirming the central role of complement activation. The results highlight the need to take into account the variability between individuals when assessing interactions between biomaterials and blood plasma, as well as the importance of the mechanistic insight that can be gained from protein identification.


Assuntos
Incrustação Biológica , Materiais Biocompatíveis/farmacologia , Incrustação Biológica/prevenção & controle , Ativação do Complemento , Humanos , Metacrilatos , Plasma , Propriedades de Superfície
9.
Thromb Haemost ; 122(3): 434-444, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34781375

RESUMO

We describe the internal structure, spatial organization and dynamic formation of coronary artery thrombi from ST-segment elevation myocardial infarction patients. Scanning electron microscopy (SEM) revealed significant differences among four groups of patients (<2 hours; 2-6 hours; 6-12 hours, and >12 hours) related to the time of ischemia. Coronary artery thrombi from patients presenting less than 2 hours after the infarction were almost entirely composed of platelets, with small amounts of fibrin and red blood cells. In contrast, thrombi from late presenters (>12 hours) consisted of mainly platelets at the distal end, where clotting was initiated, with almost no platelets at the proximal end, while the red blood cell content went from low at the initiating end to more than 90% at the proximal end. Furthermore, fibrin was present mainly on the outside of the thrombi and older thrombi contained thicker fibers. The red blood cells in late thrombi were compressed to a close-packed, tessellated array of polyhedral structures, called polyhedrocytes. Moreover, there was redistribution from the originally homogeneous composition to fibrin and platelets to the outside, with polyhedrocytes on the interior. The presence of polyhedrocytes and the redistribution of components are signs of in vivo clot contraction (or retraction). These results suggest why later thrombi are resistant to fibrinolytic agents and other treatment modalities, since the close-packed polyhedrocytes form a nearly impermeable seal. Furthermore, it is of particular clinical significance that these findings suggest specific disparate therapies that will be most effective at different stages of thrombus development.


Assuntos
Plaquetas/patologia , Trombose Coronária , Eritrócitos/patologia , Fibrina/análise , Fibrinolíticos , Infarto do Miocárdio com Supradesnível do Segmento ST , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Trombose Coronária/diagnóstico por imagem , Trombose Coronária/tratamento farmacológico , Trombose Coronária/metabolismo , Trombose Coronária/patologia , Resistência a Medicamentos/fisiologia , Feminino , Fibrinolíticos/administração & dosagem , Fibrinolíticos/efeitos adversos , Humanos , Masculino , Microscopia Eletrônica de Varredura/métodos , Pessoa de Meia-Idade , Infarto do Miocárdio com Supradesnível do Segmento ST/etiologia , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Trombectomia/métodos , Fatores de Tempo , Tempo para o Tratamento
10.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670150

RESUMO

Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.

11.
Biomed Mater ; 16(2): 025024, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33629665

RESUMO

An ideal decellularized allogenic or xenogeneic cardiovascular graft should be capable of preventing thrombus formation after implantation. The antithrombogenicity of the graft is ensured by a confluent endothelial cell layer formed on its surface. Later repopulation and remodeling of the scaffold by the patient's cells should result in the formation of living autologous tissue. In the work presented here, decellularized porcine pericardium scaffolds were modified by growing a fibrin mesh on the surface and inside the scaffolds, and by attaching heparin and human vascular endothelial growth factor (VEGF) to this mesh. Then the scaffolds were seeded with human adipose tissue-derived stem cells (ASCs). While the ASCs grew only on the surface of the decellularized pericardium, the fibrin-modified scaffolds were entirely repopulated in 28 d, and the scaffolds modified with fibrin, heparin and VEGF were already repopulated within 6 d. Label free mass spectrometry revealed fibronectin, collagens, and other extracellular matrix proteins produced by ASCs during recellularization. Thin layers of human umbilical endothelial cells were formed within 4 d after the cells were seeded on the surfaces of the scaffold, which had previously been seeded with ASCs. The results indicate that an artificial tissue prepared by in vitro recellularization and remodeling of decellularized non-autologous pericardium with autologous ASCs seems to be a promising candidate for cardiovascular grafts capable of accelerating in situ endothelialization. ASCs resemble the valve interstitial cells present in heart valves. An advantage of this approach is that ASCs can easily be collected from the patient by liposuction.


Assuntos
Valvas Cardíacas , Pericárdio/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais , Tecido Adiposo/citologia , Animais , Bioprótese , Proliferação de Células , Colágeno/química , Matriz Extracelular Descelularizada/química , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Fibrinogênio/química , Fibronectinas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Lipectomia , Microscopia de Fluorescência , Pericárdio/patologia , Células-Tronco , Suínos , Trombina/química , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
RSC Adv ; 11(11): 5903-5913, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35423133

RESUMO

Early and late thrombosis remain the most frequent reasons for the failure of synthetic cardiovascular grafts. Long-term hemocompatibility of implanted synthetic grafts can be achieved if a natural living endothelium is formed over its blood-contacting surface. Here we present a modification of a standard expanded polytetrafluorethylene (ePTFE) vessel prosthesis by a controlled preparation of a fibrin mesh enriched with covalently bound heparin and noncovalently bound vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). Compared to a bare prosthesis, the coated prosthesis showed excellent antithrombogenic properties after contact with heparinized fresh human blood. Human umbilical vein endothelial cells seeded on the inner surface of the coated prosthesis formed a confluent layer in 5 days, whereas only small colonies of cells were scattered on the bare prosthesis. Viability of the cells was promoted mainly by FGF immobilized on the coating. These findings suggest that the coating may prevent acute thrombus formation and support the self-endothelialization of an implanted ePTFE vascular graft in vivo.

13.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947982

RESUMO

Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.


Assuntos
Materiais Biomiméticos , Prótese Vascular , Materiais Revestidos Biocompatíveis , Regeneração Tecidual Guiada/instrumentação , Oligopeptídeos/química , Polietilenotereftalatos/química , Polimerização , Adsorção , Motivos de Aminoácidos , Azidas/química , Proteínas Sanguíneas , Adesão Celular , Divisão Celular , Química Click , Endotélio Vascular/fisiologia , Vidro , Ouro , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Imobilizadas , Teste de Materiais , Plasma , Silício , Propriedades de Superfície , Trombose/prevenção & controle
14.
J Vis Exp ; (157)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32202530

RESUMO

The growing use of medical devices (e.g., vascular grafts, stents, and cardiac catheters) for temporary or permanent purposes that remain in the body's circulatory system demands a reliable and multiparametric approach that evaluates the possible hematologic complications caused by these devices (i.e., activation and destruction of blood components). Comprehensive in vitro hemocompatibility testing of blood-contacting implants is the first step towards successful in vivo implementation. Therefore, extensive analysis according to the International Organization for Standardization 10993-4 (ISO 10993-4) is mandatory prior to clinical application. The presented flow loop describes a sensitive model to analyze the hemostatic performance of stents (in this case, neurovascular) and reveal adverse effects. The use of fresh human whole blood and gentle blood sampling are essential to avoid the preactivation of blood. The blood is perfused through a heparinized tubing containing the test specimen by using a peristaltic pump at a rate of 150 mL/min at 37 °C for 60 min. Before and after perfusion, hematologic markers (i.e., blood cell count, hemoglobin, hematocrit, and plasmatic markers) indicating the activation of leukocytes (polymorphonuclear [PMN]-elastase), platelets (ß-thromboglobulin [ß-TG]), the coagulation system (thombin-antithrombin III [TAT]), and the complement cascade (SC5b-9) are analyzed. In conclusion, we present an essential and reliable model for extensive hemocompatibility testing of stents and other blood-contacting devices prior to clinical application.


Assuntos
Circulação Sanguínea/fisiologia , Prótese Vascular , Teste de Materiais/métodos , Modelos Biológicos , Biomarcadores/metabolismo , Contagem de Células Sanguíneas , Circulação Sanguínea/efeitos dos fármacos , Coleta de Amostras Sanguíneas , Proteínas do Sistema Complemento/metabolismo , Heparina/farmacologia , Humanos , Sistema Imunitário/metabolismo , Elastase Pancreática/metabolismo , Plasma , Stents , beta-Tromboglobulina/metabolismo
15.
Biomed Mater ; 15(1): 015008, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31665713

RESUMO

Decellularized human pericardium is under study as an allogenic material for cardiovascular applications. The effects of crosslinking on the mechanical properties of decellularized pericardium were determined with a uniaxial tensile test, and the effects of crosslinking on the collagen structure of decellularized pericardium were determined by multiphoton microscopy. The viability of human umbilical vein endothelial cells seeded on decellularized human pericardium and on pericardium strongly and weakly crosslinked with glutaraldehyde and with genipin was evaluated by means of an MTS assay. The viability of the cells, measured by their metabolic activity, decreased considerably when the pericardium was crosslinked with glutaraldehyde. Conversely, the cell viability increased when the pericardium was crosslinked with genipin. Coating both non-modified pericardium and crosslinked pericardium with a fibrin mesh or with a mesh containing attached heparin and/or fibronectin led to a significant increase in cell viability. The highest degree of viability was attained for samples that were weakly crosslinked with genipin and modified by means of a fibrin and fibronectin coating. The results indicate a method by which in vivo endothelialization of human cardiac allografts or xenografts could potentially be encouraged.


Assuntos
Materiais Biocompatíveis , Pericárdio/transplante , Aloenxertos , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Sobrevivência Celular , Colágeno/química , Colágeno/ultraestrutura , Reagentes de Ligações Cruzadas , Fibrina , Fibronectinas , Glutaral , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Iridoides , Teste de Materiais , Microscopia de Fluorescência por Excitação Multifotônica , Pericárdio/química , Pericárdio/ultraestrutura , Ressonância de Plasmônio de Superfície , Resistência à Tração
16.
Biomacromolecules ; 20(9): 3453-3463, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31329428

RESUMO

Poly(2-alkyl-2-oxazoline)s (PAOx) represent a class of emerging polymers that can substitute or even outperform poly(ethylene oxide) (PEO) standard in various applications. Despite the great advances in PAOx research, there is still a gap in the direct experimental comparison of antifouling properties between PAOx and the golden standard PEO when exposed to blood. Motivated by this, we developed a straightforward protocol for the one-pot PAOx polymerization and surface coating by a "grafting to-" approach. First, we synthesized a library of hydrophilic poly(2-methyl-2-oxazoline)s (PMeOx) and poly(2-ethyl-2-oxazoline)s (PEtOx) with molar mass ranging from 1.5 to 10 kg/mol (DP = 16-115). The PAOx living chains were directly terminated by amine and hydroxyl groups of polydopamine (PDA) anchor layer providing the highest so far reported grafting densities ranging from 0.2 to 2.1 chains/nm2. In parallel, PEO chains providing the same degree of polymerization (molar mass from 1.2 to 5 kg/mol, DP = 28-116) bearing thiol groups were grafted to PDA. The thickness, surface-related parameters, covalent structure, and antifouling properties of the resulting polymer brushes were determined via various surface sensitive techniques. The comparison of the synthesized PAOx and PEO brushes led us to the conclusion that at the same surface-related parameters, PMeOx brushes show significantly better antifouling character when challenged against human blood plasma.


Assuntos
Oxazóis/química , Poliaminas/química , Polímeros/química , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Peso Molecular , Oxazóis/síntese química , Oxazóis/farmacologia , Plasma/efeitos dos fármacos , Poliaminas/síntese química , Poliaminas/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polimerização , Polímeros/síntese química , Polímeros/farmacologia , Propriedades de Superfície/efeitos dos fármacos
17.
Bioinspir Biomim ; 13(6): 065001, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30141414

RESUMO

In this work, two antifouling polymer brushes were tested at different shear stress conditions to evaluate their performance in reducing the initial adhesion of Escherichia coli. Assays were performed using a parallel plate flow chamber and a shear stress range between 0.005 and 0.056 Pa. These shear stress values are found in different locations in the human body where biomedical devices are placed. The poly(MeOEGMA) and poly(HPMA) brushes were characterized and it was shown that they can reduce initial adhesion up to 90% when compared to glass. Importantly, the performance of these surfaces was not affected by the shear stress, which is an indication that they do not collapse under this shear stress range. The brushes displayed a similar behavior despite the differences in their chemical composition and surface energy. Both surfaces have shown ultra-low adsorption of macromolecules from the medium when tested with relevant biological fluids (urine and serum). This indicates that these surfaces can potentially be used in biomedical devices to reduce initial bacterial colonization and eventually reduce biofilm formation on these devices.


Assuntos
Aderência Bacteriana/fisiologia , Polímeros/química , Resistência ao Cisalhamento/fisiologia , Biofilmes/crescimento & desenvolvimento , Líquidos Corporais/microbiologia , Escherichia coli , Humanos , Estresse Mecânico , Propriedades de Superfície
18.
Macromol Biosci ; 18(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356355

RESUMO

Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible.


Assuntos
Materiais Biocompatíveis , Oxigenadores de Membrana , Adsorção , Coagulação Sanguínea , Proteínas Sanguíneas/química , Adesão Celular , Humanos , Propriedades de Superfície
19.
J Biomed Mater Res A ; 105(11): 2995-3005, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28646555

RESUMO

Long-term performance of implanted cardiovascular grafts can be ensured if living endothelium overgrows their surface. Surface modifications to implants are therefore being sought that can encourage endothelialization while preventing thrombus formation until the natural endothelium is formed. In the present study, heparin was covalently attached to a fibrin mesh grown from a polyvinyl chloride (PVC) substrate surface by the catalytic action of surface immobilized thrombin on a fibrinogen solution. The coating prevented platelet activation, thrombin generation and clot formation, and reduced inflammatory reactions when exposed to fresh human whole blood circulating in a Chandler loop model. In addition, in vitro seeded human umbilical vein and human saphenous vein endothelial cells showed considerably enhanced attachment and proliferation on the coating. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2995-3005, 2017.


Assuntos
Anticoagulantes/química , Anticoagulantes/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Heparina/química , Heparina/farmacologia , Trombose/prevenção & controle , Coagulação Sanguínea/efeitos dos fármacos , Prótese Vascular/efeitos adversos , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fibrina/química , Hematócrito , Células Endoteliais da Veia Umbilical Humana , Humanos , Ativação Plaquetária/efeitos dos fármacos , Veia Safena/citologia , Trombose/sangue , Trombose/etiologia
20.
Biomacromolecules ; 18(6): 1983-1992, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28475307

RESUMO

Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Metacrilatos/química , Polietilenoglicóis/química , Técnicas Biossensoriais/métodos , Plaquetas/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Radicais Livres , Humanos , Hidrogéis/farmacologia , Bombas de Infusão Implantáveis , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Polimerização , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...