Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38780830

RESUMO

PURPOSE: Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality. In previous works, metal artifact avoidance (MAA) methods have been shown to reduce metal artifacts by adapting the scanning trajectory. Yet, these methods fail to translate to clinical practice due to remaining methodological constraints and missing workflow integration. METHODS: In this work, we propose a method to compute the spatial distribution and calibrated strengths of expected artifacts for a given tilted circular trajectory. By visualizing this as an overlay changing with the C-Arm's tilt, we enable the clinician to interactively choose an optimal trajectory while factoring in the procedural context and clinical task. We then evaluate this method in a realistic human cadaver study and compare the achieved image quality to acquisitions optimized using global metrics. RESULTS: We assess the effectiveness of the compared methods by evaluation of image quality gradings of depicted pedicle screws. We find that both global metrics as well as the proposed visualization of artifact distribution enable a drastic improvement compared to standard non-tilted scans. Furthermore, the novel interactive visualization yields a significant improvement in subjective image quality compared to the state-of-the-art global metrics. Additionally we show that by formulating an imaging task, the proposed method allows to selectively optimize image quality and avoid artifacts in the region of interest. CONCLUSION: We propose a method to spatially resolve predicted artifacts and provide a calibrated measure for artifact strength grading. This interactive MAA method proved practical and effective in reducing metal artifacts in the conducted cadaver study. We believe this study serves as a crucial step toward clinical application of an MAA system to improve image quality and enhance the clinical validation of implant placement.

2.
Ophthalmologie ; 2024 Apr 30.
Artigo em Alemão | MEDLINE | ID: mdl-38691156

RESUMO

The approval of complement inhibitory therapeutic agents for the treatment of geographic atrophy (GA) has highlighted the need for reliable and reproducible measurement of disease progression and therapeutic efficacy. Due to its availability and imaging characteristics optical coherence tomography (OCT) is the method of choice. Using OCT analysis based on artificial intelligence (AI), the therapeutic efficacy of pegcetacoplan was demonstrated at the levels of both the retinal pigment epithelium (RPE) and photoreceptors (PR). Cloud-based solutions that enable monitoring of GA are already available.

3.
Ophthalmol Sci ; 4(4): 100466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591046

RESUMO

Objective: To identify the individual progression of geographic atrophy (GA) lesions from baseline OCT images of patients in routine clinical care. Design: Clinical evaluation of a deep learning-based algorithm. Subjects: One hundred eighty-four eyes of 100 consecutively enrolled patients. Methods: OCT and fundus autofluorescence (FAF) images (both Spectralis, Heidelberg Engineering) of patients with GA secondary to age-related macular degeneration in routine clinical care were used for model validation. Fundus autofluorescence images were annotated manually by delineating the GA area by certified readers of the Vienna Reading Center. The annotated FAF images were anatomically registered in an automated manner to the corresponding OCT scans, resulting in 2-dimensional en face OCT annotations, which were taken as a reference for the model performance. A deep learning-based method for modeling the GA lesion growth over time from a single baseline OCT was evaluated. In addition, the ability of the algorithm to identify fast progressors for the top 10%, 15%, and 20% of GA growth rates was analyzed. Main Outcome Measures: Dice similarity coefficient (DSC) and mean absolute error (MAE) between manual and predicted GA growth. Results: The deep learning-based tool was able to reliably identify disease activity in GA using a standard OCT image taken at a single baseline time point. The mean DSC for the total GA region increased for the first 2 years of prediction (0.80-0.82). With increasing time intervals beyond 3 years, the DSC decreased slightly to a mean of 0.70. The MAE was low over the first year and with advancing time slowly increased, with mean values ranging from 0.25 mm to 0.69 mm for the total GA region prediction. The model achieved an area under the curve of 0.81, 0.79, and 0.77 for the identification of the top 10%, 15%, and 20% growth rates, respectively. Conclusions: The proposed algorithm is capable of fully automated GA lesion growth prediction from a single baseline OCT in a time-continuous fashion in the form of en face maps. The results are a promising step toward clinical decision support tools for therapeutic dosing and guidance of patient management because the first treatment for GA has recently become available. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

4.
IEEE Trans Med Imaging ; PP2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635383

RESUMO

The lack of reliable biomarkers makes predicting the conversion from intermediate to neovascular age-related macular degeneration (iAMD, nAMD) a challenging task. We develop a Deep Learning (DL) model to predict the future risk of conversion of an eye from iAMD to nAMD from its current OCT scan. Although eye clinics generate vast amounts of longitudinal OCT scans to monitor AMD progression, only a small subset can be manually labeled for supervised DL. To address this issue, we propose Morph-SSL, a novel Self-supervised Learning (SSL) method for longitudinal data. It uses pairs of unlabelled OCT scans from different visits and involves morphing the scan from the previous visit to the next. The Decoder predicts the transformation for morphing and ensures a smooth feature manifold that can generate intermediate scans between visits through linear interpolation. Next, the Morph-SSL trained features are input to a Classifier which is trained in a supervised manner to model the cumulative probability distribution of the time to conversion with a sigmoidal function. Morph-SSL was trained on unlabelled scans of 399 eyes (3570 visits). The Classifier was evaluated with a five-fold cross-validation on 2418 scans from 343 eyes with clinical labels of the conversion date. The Morph-SSL features achieved an AUC of 0.779 in predicting the conversion to nAMD within the next 6 months, outperforming the same network when trained end-to-end from scratch or pre-trained with popular SSL methods. Automated prediction of the future risk of nAMD onset can enable timely treatment and individualized AMD management.

5.
IEEE Trans Med Imaging ; PP2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656867

RESUMO

Self-supervised learning (SSL) has emerged as a powerful technique for improving the efficiency and effectiveness of deep learning models. Contrastive methods are a prominent family of SSL that extract similar representations of two augmented views of an image while pushing away others in the representation space as negatives. However, the state-of-the-art contrastive methods require large batch sizes and augmentations designed for natural images that are impractical for 3D medical images. To address these limitations, we propose a new longitudinal SSL method, 3DTINC, based on non-contrastive learning. It is designed to learn perturbation-invariant features for 3D optical coherence tomography (OCT) volumes, using augmentations specifically designed for OCT. We introduce a new non-contrastive similarity loss term that learns temporal information implicitly from intra-patient scans acquired at different times. Our experiments show that this temporal information is crucial for predicting progression of retinal diseases, such as age-related macular degeneration (AMD). After pretraining with 3DTINC, we evaluated the learned representations and the prognostic models on two large-scale longitudinal datasets of retinal OCTs where we predict the conversion to wet-AMD within a six-month interval. Our results demonstrate that each component of our contributions is crucial for learning meaningful representations useful in predicting disease progression from longitudinal volumetric scans.

6.
Surv Ophthalmol ; 69(2): 165-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37890677

RESUMO

There is a need to identify accurately prognostic factors that determine the progression of intermediate to late-stage age-related macular degeneration (AMD). Currently, clinicians cannot provide individualised prognoses of disease progression. Moreover, enriching clinical trials with rapid progressors may facilitate delivery of shorter intervention trials aimed at delaying or preventing progression to late AMD. Thus, we performed a systematic review to outline and assess the accuracy of reporting prognostic factors for the progression of intermediate to late AMD. A meta-analysis was originally planned. Synonyms of AMD and disease progression were used to search Medline and EMBASE for articles investigating AMD progression published between 1991 and 2021. Initial search results included 3229 articles. Predetermined eligibility criteria were employed to systematically screen papers by two reviewers working independently and in duplicate. Quality appraisal and data extraction were performed by a team of reviewers. Only 6 studies met the eligibility criteria. Based on these articles, exploratory prognostic factors for progression of intermediate to late AMD included phenotypic features (e.g. location and size of drusen), age, smoking status, ocular and systemic co-morbidities, race, and genotype. Overall, study heterogeneity precluded reporting by forest plots and meta-analysis. The most commonly reported prognostic factors were baseline drusen volume/size, which was associated with progression to neovascular AMD, and outer retinal thinning linked to progression to geographic atrophy. In conclusion, poor methodological quality of included studies warrants cautious interpretation of our findings. Rigorous studies are warranted to provide robust evidence in the future.


Assuntos
Drusas Retinianas , Degeneração Macular Exsudativa , Humanos , Prognóstico , Inibidores da Angiogênese , Progressão da Doença , Acuidade Visual , Fator A de Crescimento do Endotélio Vascular
7.
Sci Rep ; 13(1): 19545, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945665

RESUMO

Real-world retinal optical coherence tomography (OCT) scans are available in abundance in primary and secondary eye care centres. They contain a wealth of information to be analyzed in retrospective studies. The associated electronic health records alone are often not enough to generate a high-quality dataset for clinical, statistical, and machine learning analysis. We have developed a deep learning-based age-related macular degeneration (AMD) stage classifier, to efficiently identify the first onset of early/intermediate (iAMD), atrophic (GA), and neovascular (nAMD) stage of AMD in retrospective data. We trained a two-stage convolutional neural network to classify macula-centered 3D volumes from Topcon OCT images into 4 classes: Normal, iAMD, GA and nAMD. In the first stage, a 2D ResNet50 is trained to identify the disease categories on the individual OCT B-scans while in the second stage, four smaller models (ResNets) use the concatenated B-scan-wise output from the first stage to classify the entire OCT volume. Classification uncertainty estimates are generated with Monte-Carlo dropout at inference time. The model was trained on a real-world OCT dataset, 3765 scans of 1849 eyes, and extensively evaluated, where it reached an average ROC-AUC of 0.94 in a real-world test set.


Assuntos
Aprendizado Profundo , Degeneração Macular , Humanos , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Degeneração Macular/diagnóstico por imagem , Redes Neurais de Computação
8.
Transl Vis Sci Technol ; 12(8): 21, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624605

RESUMO

Purpose: To investigate and compare novel volumetric microperimetry (MP)-derived metrics in intermediate age-related macular degeneration (iAMD), as current MP metrics show high variability and low sensitivity. Methods: This is a cross-sectional analysis of microperimetry baseline data from the multicenter, prospective PINNACLE study (ClinicalTrials.gov NCT04269304). The Visual Field Modeling and Analysis (VFMA) software and an open-source implementation (OSI) were applied to calculate MP-derived hill-of-vison (HOV) surface plots and the total volume (VTOT) beneath the plots. Bland-Altman plots were used for methodologic comparison, and the association of retinal sensitivity metrics with explanatory variables was tested with mixed-effects models. Results: In total, 247 eyes of 189 participants (75 ± 7.3 years) were included in the analysis. The VTOT output of VFMA and OSI exhibited a significant difference (P < 0.0001). VFMA yielded slightly higher coefficients of determination than OSI and mean sensitivity (MS) in univariable and multivariable modeling, for example, in association with low-luminance visual acuity (LLVA) (marginal R2/conditional R2: VFMA 0.171/0.771, OSI 0.162/0.765, MS 0.133/0.755). In the multivariable analysis, LLVA was the only demonstrable predictor of VFMA VTOT (t-value, P-value: -7.5, <0.001) and MS (-6.5, <0.001). Conclusions: The HOV-derived metric of VTOT exhibits favorable characteristics compared to MS in evaluating retinal sensitivity. The output of VFMA and OSI is not exactly interchangeable in this cross-sectional analysis. Longitudinal analysis is necessary to assess their performance in ability-to-detect change. Translational Relevance: This study explores new volumetric MP endpoints for future application in therapeutic trials in iAMD and reports specific characteristics of the available HOV software applications.


Assuntos
Benchmarking , Degeneração Macular , Humanos , Estudos Transversais , Estudos Prospectivos , Testes de Campo Visual , Degeneração Macular/diagnóstico , Retina/diagnóstico por imagem
9.
Ophthalmologie ; 120(9): 965-969, 2023 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-37419965

RESUMO

With the prospect of available therapy for geographic atrophy in the near future and consequently increasing patient numbers, appropriate management strategies for the clinical practice are needed. Optical coherence tomography (OCT) as well as automated OCT analysis using artificial intelligence algorithms provide optimal conditions for assessing disease activity as well as the treatment response for geographic atrophy through a rapid, precise and resource-efficient evaluation.


Assuntos
Atrofia Geográfica , Humanos , Atrofia Geográfica/diagnóstico , Tomografia de Coerência Óptica/métodos , Inteligência Artificial , Angiofluoresceinografia/métodos , Epitélio Pigmentado da Retina , Progressão da Doença
10.
Biomed Opt Express ; 14(6): 2449-2464, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342683

RESUMO

In patients with age-related macular degeneration (AMD), the risk of progression to late stages is highly heterogeneous, and the prognostic imaging biomarkers remain unclear. We propose a deep survival model to predict the progression towards the late atrophic stage of AMD. The model combines the advantages of survival modelling, accounting for time-to-event and censoring, and the advantages of deep learning, generating prediction from raw 3D OCT scans, without the need for extracting a predefined set of quantitative biomarkers. We demonstrate, in an extensive set of evaluations, based on two large longitudinal datasets with 231 eyes from 121 patients for internal evaluation, and 280 eyes from 140 patients for the external evaluation, that this model improves the risk estimation performance over standard deep learning classification models.

12.
Ophthalmol Sci ; 3(3): 100294, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37113474

RESUMO

Purpose: To study the individual course of retinal changes caused by healthy aging using deep learning. Design: Retrospective analysis of a large data set of retinal OCT images. Participants: A total of 85 709 adults between the age of 40 and 75 years of whom OCT images were acquired in the scope of the UK Biobank population study. Methods: We created a counterfactual generative adversarial network (GAN), a type of neural network that learns from cross-sectional, retrospective data. It then synthesizes high-resolution counterfactual OCT images and longitudinal time series. These counterfactuals allow visualization and analysis of hypothetical scenarios in which certain characteristics of the imaged subject, such as age or sex, are altered, whereas other attributes, crucially the subject's identity and image acquisition settings, remain fixed. Main Outcome Measures: Using our counterfactual GAN, we investigated subject-specific changes in the retinal layer structure as a function of age and sex. In particular, we measured changes in the retinal nerve fiber layer (RNFL), combined ganglion cell layer plus inner plexiform layer (GCIPL), inner nuclear layer to the inner boundary of the retinal pigment epithelium (INL-RPE), and retinal pigment epithelium (RPE). Results: Our counterfactual GAN is able to smoothly visualize the individual course of retinal aging. Across all counterfactual images, the RNFL, GCIPL, INL-RPE, and RPE changed by -0.1 µm ± 0.1 µm, -0.5 µm ± 0.2 µm, -0.2 µm ± 0.1 µm, and 0.1 µm ± 0.1 µm, respectively, per decade of age. These results agree well with previous studies based on the same cohort from the UK Biobank population study. Beyond population-wide average measures, our counterfactual GAN allows us to explore whether the retinal layers of a given eye will increase in thickness, decrease in thickness, or stagnate as a subject ages. Conclusion: This study demonstrates how counterfactual GANs can aid research into retinal aging by generating high-resolution, high-fidelity OCT images, and longitudinal time series. Ultimately, we envision that they will enable clinical experts to derive and explore hypotheses for potential imaging biomarkers for healthy and pathologic aging that can be refined and tested in prospective clinical trials. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

13.
Sci Rep ; 13(1): 7028, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120456

RESUMO

Geographic atrophy (GA) represents a late stage of age-related macular degeneration, which leads to irreversible vision loss. With the first successful therapeutic approach, namely complement inhibition, huge numbers of patients will have to be monitored regularly. Given these perspectives, a strong need for automated GA segmentation has evolved. The main purpose of this study was the clinical validation of an artificial intelligence (AI)-based algorithm to segment a topographic 2D GA area on a 3D optical coherence tomography (OCT) volume, and to evaluate its potential for AI-based monitoring of GA progression under complement-targeted treatment. 100 GA patients from routine clinical care at the Medical University of Vienna for internal validation and 113 patients from the FILLY phase 2 clinical trial for external validation were included. Mean Dice Similarity Coefficient (DSC) was 0.86 ± 0.12 and 0.91 ± 0.05 for total GA area on the internal and external validation, respectively. Mean DSC for the GA growth area at month 12 on the external test set was 0.46 ± 0.16. Importantly, the automated segmentation by the algorithm corresponded to the outcome of the original FILLY trial measured manually on fundus autofluorescence. The proposed AI approach can reliably segment GA area on OCT with high accuracy. The availability of such tools represents an important step towards AI-based monitoring of GA progression under treatment on OCT for clinical management as well as regulatory trials.


Assuntos
Atrofia Geográfica , Humanos , Feminino , Animais , Cavalos , Atrofia Geográfica/diagnóstico por imagem , Inteligência Artificial , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia , Epitélio Pigmentado da Retina
14.
Ophthalmol Retina ; 7(1): 4-13, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948209

RESUMO

PURPOSE: To identify disease activity and effects of intravitreal pegcetacoplan treatment on the topographic progression of geographic atrophy (GA) secondary to age-related macular degeneration quantified in spectral-domain OCT (SD-OCT) by automated deep learning assessment. DESIGN: Retrospective analysis of a phase II clinical trial study evaluating pegcetacoplan in GA patients (FILLY, NCT02503332). SUBJECTS: SD-OCT scans of 57 eyes with monthly treatment, 46 eyes with every-other-month (EOM) treatment, and 53 eyes with sham injection from baseline and 12-month follow-ups were included, in a total of 312 scans. METHODS: Retinal pigment epithelium loss, photoreceptor (PR) integrity, and hyperreflective foci (HRF) were automatically segmented using validated deep learning algorithms. Local progression rate (LPR) was determined from a growth model measuring the local expansion of GA margins between baseline and 1 year. For each individual margin point, the eccentricity to the foveal center, the progression direction, mean PR thickness, and HRF concentration in the junctional zone were computed. Mean LPR in disease activity and treatment effect conditioned on these properties were estimated by spatial generalized additive mixed-effect models. MAIN OUTCOME MEASURES: LPR of GA, PR thickness, and HRF concentration in µm. RESULTS: A total of 31,527 local GA margin locations were analyzed. LPR was higher for areas with low eccentricity to the fovea, thinner PR layer thickness, or higher HRF concentration in the GA junctional zone. When controlling for topographic and structural risk factors, we report on average a significantly lower LPR by -28.0% (95% confidence interval [CI], -42.8 to -9.4; P = 0.0051) and -23.9% (95% CI, -40.2 to -3.0; P = 0.027) for monthly and EOM-treated eyes, respectively, compared with sham. CONCLUSIONS: Assessing GA progression on a topographic level is essential to capture the pathognomonic heterogeneity in individual lesion growth and therapeutic response. Pegcetacoplan-treated eyes showed a significantly slower GA lesion progression rate compared with sham, and an even slower growth rate toward the fovea. This study may help to identify patient cohorts with faster progressing lesions, in which pegcetacoplan treatment would be particularly beneficial. Automated artificial intelligence-based tools will provide reliable guidance for the management of GA in clinical practice.


Assuntos
Aprendizado Profundo , Atrofia Geográfica , Animais , Feminino , Humanos , Inteligência Artificial , Progressão da Doença , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/tratamento farmacológico , Cavalos , Estudos Retrospectivos , Tomografia de Coerência Óptica
16.
Eye (Lond) ; 37(6): 1275-1283, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35614343

RESUMO

AIMS: Age-related macular degeneration (AMD) is characterised by a progressive loss of central vision. Intermediate AMD is a risk factor for progression to advanced stages categorised as geographic atrophy (GA) and neovascular AMD. However, rates of progression to advanced stages vary between individuals. Recent advances in imaging and computing technologies have enabled deep phenotyping of intermediate AMD. The aim of this project is to utilise machine learning (ML) and advanced statistical modelling as an innovative approach to discover novel features and accurately quantify markers of pathological retinal ageing that can individualise progression to advanced AMD. METHODS: The PINNACLE study consists of both retrospective and prospective parts. In the retrospective part, more than 400,000 optical coherent tomography (OCT) images collected from four University Teaching Hospitals and the UK Biobank Population Study are being pooled, centrally stored and pre-processed. With this large dataset featuring eyes with AMD at various stages and healthy controls, we aim to identify imaging biomarkers for disease progression for intermediate AMD via supervised and unsupervised ML. The prospective study part will firstly characterise the progression of intermediate AMD in patients followed between one and three years; secondly, it will validate the utility of biomarkers identified in the retrospective cohort as predictors of progression towards late AMD. Patients aged 55-90 years old with intermediate AMD in at least one eye will be recruited across multiple sites in UK, Austria and Switzerland for visual function tests, multimodal retinal imaging and genotyping. Imaging will be repeated every four months to identify early focal signs of deterioration on spectral-domain optical coherence tomography (OCT) by human graders. A focal event triggers more frequent follow-up with visual function and imaging tests. The primary outcome is the sensitivity and specificity of the OCT imaging biomarkers. Secondary outcomes include sensitivity and specificity of novel multimodal imaging characteristics at predicting disease progression, ROC curves, time from development of imaging change to development of these endpoints, structure-function correlations, structure-genotype correlation and predictive risk models. CONCLUSIONS: This is one of the first studies in intermediate AMD to combine both ML, retrospective and prospective AMD patient data with the goal of identifying biomarkers of progression and to report the natural history of progression of intermediate AMD with multimodal retinal imaging.


Assuntos
Drusas Retinianas , Degeneração Macular Exsudativa , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Prospectivos , Drusas Retinianas/diagnóstico , Inibidores da Angiogênese , Estudos Retrospectivos , Progressão da Doença , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Degeneração Macular Exsudativa/complicações , Tomografia de Coerência Óptica/métodos
17.
Am J Ophthalmol ; 244: 175-182, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35853489

RESUMO

PURPOSE: To perform an optical coherence tomography (OCT)-based analysis of geographic atrophy (GA) progression in patients treated with pegcetacoplan. DESIGN: Post hoc analysis of a phase 2 multicenter, randomized, sham-controlled trial. METHODS: Manual annotation of retinal pigment epithelium (RPE), ellipsoid zone (EZ), and external limiting membrane (ELM) loss was performed on OCT volumes from baseline and month 12 from the phase 2 FILLY trial of intravitreal pegcetacoplan for the treatment of GA secondary to age-related macular degeneration. MAIN OUTCOME MEASURES: Correlation of GA areas measured on fundus autofluorescence and OCT. Difference in square root transformed growth rates of RPE, EZ, and ELM loss between treatment groups (monthly injection [AM], injection every other month [AEOM], and sham [SM]). RESULTS: OCT volumes from 113 eyes of 113 patients (38 AM, 36 AEOM, and 39 SM) were included, resulting in 11 074 B-scans. The median growth of RPE loss was significantly slower in the AM group (0.158 [0.057-0.296]) than the SM group (0.255 [0.188-0.359], P = .014). Importantly, the growth of EZ loss was also significantly slower in the AM group (0.127 [0.041-0.247]) than the SM group (0.232 [0.130-0.349], P = .017). There was no significant difference in the growth of ELM loss between the treatment groups (P = .114). CONCLUSIONS: OCT imaging provided consistent results for GA growth compared with fundus autofluorescence. In addition to slower RPE atrophy progression in patients treated with pegcetacoplan, a significant reduction in EZ impairment was also identified by OCT, suggesting the use of OCT as a potentially more sensitive monitoring tool in GA therapy.


Assuntos
Atrofia Geográfica , Humanos , Angiofluoresceinografia/métodos , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/tratamento farmacológico , Epitélio Pigmentado da Retina , Tomografia de Coerência Óptica/métodos , Acuidade Visual
18.
Ophthalmol Retina ; 6(11): 1009-1018, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35667569

RESUMO

PURPOSE: To investigate the therapeutic effect of intravitreal pegcetacoplan on the inhibition of photoreceptor (PR) loss and thinning in geographic atrophy (GA) on conventional spectral-domain OCT (SD-OCT) imaging by deep learning-based automated PR quantification. DESIGN: Post hoc analysis of a prospective, multicenter, randomized, sham (SM)-controlled, masked phase II trial investigating the safety and efficacy of pegcetacoplan for the treatment of GA because of age-related macular degeneration. PARTICIPANTS: Study eyes of 246 patients, randomized 1:1:1 to monthly (AM), bimonthly (AEOM), and SM treatment. METHODS: We performed fully automated, deep learning-based segmentation of retinal pigment epithelium (RPE) loss and PR thickness on SD-OCT volumes acquired at baseline and months 2, 6, and 12. The difference in the change of PR loss area was compared among the treatment arms. Change in PR thickness adjacent to the GA borders and the entire 20° scanning area was compared between treatment arms. MAIN OUTCOME MEASURES: Square-root transformed PR loss area in µm or mm, PR thickness in µm, and PR loss/RPE loss ratio. RESULTS: A total of 31 556 B-scans of 644 SD-OCT volumes of 161 study eyes (AM 52, AEOM 54, SM 56) were evaluated from baseline to month 12. Comparison of the mean change in PR loss area revealed statistically significantly less growth in the AM group at months 2, 6, and 12 than in the SM group (-41 µm ± 219 vs. 77 µm ± 126; P = 0.0004; -5 µm ± 221 vs. 156 µm ± 139; P < 0.0001; 106 µm ± 400 vs. 283 µm ± 226; P = 0.0014). Photoreceptor thinning was significantly reduced under AM treatment compared with SM within the GA junctional zone, as well as throughout the 20° area. A trend toward greater inhibition of PR loss than RPE loss was observed under therapy. CONCLUSIONS: Distinct and reliable quantification of PR loss using deep learning-based algorithms offers an essential tool to evaluate therapeutic efficacy in slowing disease progression. Photoreceptor loss and thinning are reduced by intravitreal complement C3 inhibition. Automated quantification of PR loss/maintenance based on OCT images is an ideal approach to reliably monitor disease activity and therapeutic efficacy in GA management in clinical routine and regulatory trials.


Assuntos
Atrofia Geográfica , Humanos , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/tratamento farmacológico , Angiofluoresceinografia/métodos , Tomografia de Coerência Óptica/métodos , Estudos Prospectivos , Inteligência Artificial , Acuidade Visual
19.
Prog Retin Eye Res ; 86: 100972, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166808

RESUMO

Retinal fluid as the major biomarker in exudative macular disease is accurately visualized by high-resolution three-dimensional optical coherence tomography (OCT), which is used world-wide as a diagnostic gold standard largely replacing clinical examination. Artificial intelligence (AI) with its capability to objectively identify, localize and quantify fluid introduces fully automated tools into OCT imaging for personalized disease management. Deep learning performance has already proven superior to human experts, including physicians and certified readers, in terms of accuracy and speed. Reproducible measurement of retinal fluid relies on precise AI-based segmentation methods that assign a label to each OCT voxel denoting its fluid type such as intraretinal fluid (IRF) and subretinal fluid (SRF) or pigment epithelial detachment (PED) and its location within the central 1-, 3- and 6-mm macular area. Such reliable analysis is most relevant to reflect differences in pathophysiological mechanisms and impacts on retinal function, and the dynamics of fluid resolution during therapy with different regimens and substances. Yet, an in-depth understanding of the mode of action of supervised and unsupervised learning, the functionality of a convolutional neural net (CNN) and various network architectures is needed. Greater insight regarding adequate methods for performance, validation assessment, and device- and scanning-pattern-dependent variations is necessary to empower ophthalmologists to become qualified AI users. Fluid/function correlation can lead to a better definition of valid fluid variables relevant for optimal outcomes on an individual and a population level. AI-based fluid analysis opens the way for precision medicine in real-world practice of the leading retinal diseases of modern times.


Assuntos
Inteligência Artificial , Líquido Sub-Retiniano , Humanos , Retina/diagnóstico por imagem , Líquido Sub-Retiniano/diagnóstico por imagem , Tomografia de Coerência Óptica , Acuidade Visual
20.
Ophthalmol Retina ; 6(4): 291-297, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34922038

RESUMO

PURPOSE: To investigate the functional associations of intraretinal fluid (IRF) and subretinal fluid (SRF) volumes at baseline and after the loading dose as well as fluid change after the first injection with best-corrected visual acuity (BCVA) in patients with neovascular age-related macular degeneration (nAMD) who received an anti-VEGF treatment over 24 months. DESIGN: Post hoc analysis of a phase III, randomized, multicenter trial in which ranibizumab was administered monthly or in a pro re nata regimen (HARBOR). PARTICIPANTS: Study eyes of 1094 treatment-naïve patients with nAMD. METHODS: IRF and SRF volumes were segmented automatically on monthly spectral domain OCT images. Fluid volumes and changes thereof were included as covariates into longitudinal mixed-effects models, which modeled BCVA trajectories. MAIN OUTCOME MEASURES: BCVA estimates corresponding to baseline, follow-up, and persistent IRF/SRF volumes after the loading dose; BCVA estimates of change in fluid volumes after the first injection; and marginal and conditional R2. RESULTS: Analysis of 22 494 volumetric scans revealed that foveal IRF consistently shows a negative correlation with BCVA at baseline and subsequent visits (-3.23 and -4.32 letters/100 nL, respectively). After the first injection, BCVA increased by +2.13 letters/100 nL decrease in foveal IRF. Persistent IRF was associated with lower baseline BCVA and less improvement. Foveal SRF correlated with better BCVA at baseline and subsequent visits (+6.52 and +1.42 letters/100 nL, respectively). After the first injection, SRF decrease was associated with significant vision gain (+5.88 letters/100 nL). Foveal fluid correlated more with BCVA than parafoveal IRF/SRF. CONCLUSIONS: Although IRF consistently correlates with decreased function and recovery throughout therapy, SRF is associated with a more pronounced functional improvement. Moreover, SRF resolution provides increased benefit. Fluid-function correlation represents an essential base for the development of personalized treatment regimens, optimizing functional outcomes, and reducing treatment burden.


Assuntos
Líquido Sub-Retiniano , Fator A de Crescimento do Endotélio Vascular , Pré-Escolar , Humanos , Injeções Intravítreas , Líquido Sub-Retiniano/diagnóstico por imagem , Tomografia de Coerência Óptica , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...