Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(1): e0002623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38078749

RESUMO

Microbial communities have evolved to colonize all ecosystems of the planet, from the deep sea to the human gut. Microbes survive by sensing, responding, and adapting to immediate environmental cues. This process is driven by signal transduction proteins such as histidine kinases, which use their sensing domains to bind or otherwise detect environmental cues and "transduce" signals to adjust internal processes. We hypothesized that an ecosystem's unique stimuli leave a sensor "fingerprint," able to identify and shed insight on ecosystem conditions. To test this, we collected 20,712 publicly available metagenomes from Host-associated, Environmental, and Engineered ecosystems across the globe. We extracted and clustered the collection's nearly 18M unique sensory domains into 113,712 similar groupings with MMseqs2. We built gradient-boosted decision tree machine learning models and found we could classify the ecosystem type (accuracy: 87%) and predict the levels of different physical parameters (R2 score: 83%) using the sensor cluster abundance as features. Feature importance enables identification of the most predictive sensors to differentiate between ecosystems which can lead to mechanistic interpretations if the sensor domains are well annotated. To demonstrate this, a machine learning model was trained to predict patient's disease state and used to identify domains related to oxygen sensing present in a healthy gut but missing in patients with abnormal conditions. Moreover, since 98.7% of identified sensor domains are uncharacterized, importance ranking can be used to prioritize sensors to determine what ecosystem function they may be sensing. Furthermore, these new predictive sensors can function as targets for novel sensor engineering with applications in biotechnology, ecosystem maintenance, and medicine.IMPORTANCEMicrobes infect, colonize, and proliferate due to their ability to sense and respond quickly to their surroundings. In this research, we extract the sensory proteins from a diverse range of environmental, engineered, and host-associated metagenomes. We trained machine learning classifiers using sensors as features such that it is possible to predict the ecosystem for a metagenome from its sensor profile. We use the optimized model's feature importance to identify the most impactful and predictive sensors in different environments. We next use the sensor profile from human gut metagenomes to classify their disease states and explore which sensors can explain differences between diseases. The sensors most predictive of environmental labels here, most of which correspond to uncharacterized proteins, are a useful starting point for the discovery of important environment signals and the development of possible diagnostic interventions.


Assuntos
Metagenômica , Microbiota , Humanos , Metagenoma , Aprendizado de Máquina , Planeta Terra
2.
Nat Protoc ; 18(1): 208-238, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36376589

RESUMO

Uncultivated Bacteria and Archaea account for the vast majority of species on Earth, but obtaining their genomes directly from the environment, using shotgun sequencing, has only become possible recently. To realize the hope of capturing Earth's microbial genetic complement and to facilitate the investigation of the functional roles of specific lineages in a given ecosystem, technologies that accelerate the recovery of high-quality genomes are necessary. We present a series of analysis steps and data products for the extraction of high-quality metagenome-assembled genomes (MAGs) from microbiomes using the U.S. Department of Energy Systems Biology Knowledgebase (KBase) platform ( http://www.kbase.us/ ). Overall, these steps take about a day to obtain extracted genomes when starting from smaller environmental shotgun read libraries, or up to about a week from larger libraries. In KBase, the process is end-to-end, allowing a user to go from the initial sequencing reads all the way through to MAGs, which can then be analyzed with other KBase capabilities such as phylogenetic placement, functional assignment, metabolic modeling, pangenome functional profiling, RNA-Seq and others. While portions of such capabilities are available individually from other resources, the combination of the intuitive usability, data interoperability and integration of tools in a freely available computational resource makes KBase a powerful platform for obtaining MAGs from microbiomes. While this workflow offers tools for each of the key steps in the genome extraction process, it also provides a scaffold that can be easily extended with additional MAG recovery and analysis tools, via the KBase software development kit (SDK).


Assuntos
Metagenoma , Microbiota , Filogenia , Genoma Bacteriano , Microbiota/genética , Bactérias/genética , Metagenômica
4.
Nat Protoc ; 16(11): 5030-5082, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635859

RESUMO

Genome-scale stoichiometric modeling of metabolism has become a standard systems biology tool for modeling cellular physiology and growth. Extensions of this approach are emerging as a valuable avenue for predicting, understanding and designing microbial communities. Computation of microbial ecosystems in time and space (COMETS) extends dynamic flux balance analysis to generate simulations of multiple microbial species in molecularly complex and spatially structured environments. Here we describe how to best use and apply the most recent version of COMETS, which incorporates a more accurate biophysical model of microbial biomass expansion upon growth, evolutionary dynamics and extracellular enzyme activity modules. In addition to a command-line option, COMETS includes user-friendly Python and MATLAB interfaces compatible with the well-established COBRA models and methods, as well as comprehensive documentation and tutorials. This protocol provides a detailed guideline for installing, testing and applying COMETS to different scenarios, generating simulations that take from a few minutes to several days to run, with broad applicability to microbial communities across biomes and scales.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Microbiota
6.
Cell Rep ; 7(4): 1104-15, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24794435

RESUMO

The interspecies exchange of metabolites plays a key role in the spatiotemporal dynamics of microbial communities. This raises the question of whether ecosystem-level behavior of structured communities can be predicted using genome-scale metabolic models for multiple organisms. We developed a modeling framework that integrates dynamic flux balance analysis with diffusion on a lattice and applied it to engineered communities. First, we predicted and experimentally confirmed the species ratio to which a two-species mutualistic consortium converges and the equilibrium composition of a newly engineered three-member community. We next identified a specific spatial arrangement of colonies, which gives rise to what we term the "eclipse dilemma": does a competitor placed between a colony and its cross-feeding partner benefit or hurt growth of the original colony? Our experimentally validated finding that the net outcome is beneficial highlights the complex nature of metabolic interactions in microbial communities while at the same time demonstrating their predictability.


Assuntos
Ecossistema , Microbiota/fisiologia , Modelos Biológicos , Comportamento Espacial/fisiologia , Análise Espaço-Temporal
7.
PLoS Comput Biol ; 6(4): e1000725, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20369010

RESUMO

Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.


Assuntos
Algoritmos , Biologia Computacional/métodos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Simulação por Computador , Bases de Dados Genéticas , Escherichia coli/genética
8.
Genome Inform ; 20: 159-70, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19425131

RESUMO

Regulation of metabolic enzymes plays a crucial role in the maintenance of metabolic homeostasis, and in the capacity of living systems to undergo physiological adaptation under multiple environmental conditions. Metabolic regulation is achieved through a complex interplay of transcriptional and post-transcriptional mechanisms, some of which have been experimentally characterized for specific pathways and organisms. Many of the details, however, including the values of most kinetic parameters, have proven difficult to elucidate. Hence, understanding the principles that underlie metabolic regulation strategies constitutes an ongoing challenge. In the context of genome-scale steady state models of metabolic networks, it has been shown that evolution may drive metabolic networks towards reaching computationally predictable optimal states, such as maximal growth capacity. Here we develop a new computational approach based on the hypothesis that the regulatory systems operating on metabolic networks have evolved towards an optimal architecture as well. Specifically, we hypothesize that the topology of metabolic regulation networks has been selected for optimally maintaining the system balanced around one or more steady states. Based on these hypotheses, we use methods related to flux balance analysis to construct a model of metabolic regulation based primarily on a metabolic network's topology, bypassing the requirement for the details of all kinetic parameters. This model predicts an optimal regulatory network of metabolic interactions that can resolve perturbations to a given steady state in a metabolic system. We explore the ability of the model to predict optimal regulatory responses in both a simple toy network and in a fragment of the well-described glycolysis pathway.


Assuntos
Metabolismo , Processamento Pós-Transcricional do RNA , Células/metabolismo , Meio Ambiente , Enzimas/genética , Enzimas/metabolismo , Regulação da Expressão Gênica , Homeostase , Cinética , Modelos Biológicos , Modelos Genéticos , Dinâmica não Linear , Organização e Administração , Relação Estrutura-Atividade , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...