Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Shoulder Elbow Surg ; 33(1): 145-155, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37689102

RESUMO

BACKGROUND: Overloading of the elbow joint prosthesis following total elbow arthroplasty can lead to implant failure. Joint moments during daily activities are not well contextualized for a prosthesis's failure limits, and the effect of the current postoperative instruction on elbow joint loading is unclear. This study investigates the difference in elbow joint moments between simulated daily tasks and between flexion-extension, pronation-supination, and varus-valgus movement directions. Additionally, the effect of the current postoperative instruction on elbow joint load is examined. METHODS: Nine healthy participants (age 45.8 ± 17 years, 3 males) performed 8 tasks; driving a car, opening a door, rising from a chair, lifting, sliding, combing hair, drinking, emptying cup, without and with the instruction "not lifting more than 1 kg." Upper limb kinematics and hand contact forces were measured. Elbow joint angles and net moments were analyzed using inverse dynamic analysis, where the net moments are estimated from movement data and external forces. RESULTS: Peak elbow joint moments differed significantly between tasks (P < .01) and movement directions (P < .01). The most and least demanding tasks were, rising from a chair (13.4 Nm extension, 5.0 Nm supination, and 15.2 Nm valgus) and sliding (4.3 Nm flexion, 1.7 Nm supination, and 2.6 Nm varus). Net moments were significantly reduced after instruction only in the chair task (P < .01). CONCLUSION: This study analyzed elbow joint moments in different directions during daily tasks. The outcomes question whether postoperative instruction can lead to decreasing elbow loads. Future research might focus on reducing elbow loads in the flexion-extension and varus-valgus directions.


Assuntos
Artroplastia de Substituição do Cotovelo , Articulação do Cotovelo , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Articulação do Cotovelo/cirurgia , Cotovelo , Atividades Cotidianas , Movimento , Fenômenos Biomecânicos
2.
Sci Med Footb ; : 1-9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059842

RESUMO

This study assessed the discriminative validity of summarized hip and knee angular accelerations during a standardized training drill. Twenty-eight soccer players performed a standardized training drill that mimics game demands. Discriminative validity was examined by assessment of between-group differences of summarized preferred kicking leg hip and knee angular accelerations, and Playerload between national and regional soccer players for the full training drill, and parts based on locomotor intensity, or additional pass and jumping header activities. Furthermore, relationships were assessed between the summarized hip and knee angular accelerations and conventional load indicators derived from a local positioning measurement system, such as high-intensity running distance and Playerload. National players had higher summarized hip (Mean difference: 62.7 A.U. ES = 0.77, p = 0.049) and knee (Mean difference: 137.1 A.U. ES = 1.06, p = 0.008) angular accelerations. Significant interaction effects were observed during high-intensity running (Hip: 0.2 A.U./m, ES = 0.98, p = 0.005; Knee: 0.61 A.U./m, ES = 1.52, p < 0.001), and sprinting (Hip: 0.3 A.U./m, ES = 1.01, p < 0.02; Knee: 0.56 A.U./m, ES = 1.57, p < 0.001). Between-group differences were not present for additional passing or jumping header activities. Compared to summarized hip and knee angular accelerations, Playerload had less ability to discriminate between players and activities. Moreover, the lower extremity training load indicators were unrelated to conventional load indicators. Together these results confirm discriminative validity of summarized hip and knee angular acceleration training load indicators during a standardised training drill.


The results in this study substantiate the use and validity of summarized hip and knee angular accelerations as external training load indicators for the lower extremities in soccer. Based on the known-group difference technique, expected differences in summarized hip and knee angular accelerations between national and regional soccer players were observed during a standardized soccer training drill. These differences were present during high intensity running and sprint activities, but not for passing or jumping header activities. The limited ability of Playerload to discriminate between players and tasks, and insignificant relationships between measurement systems in this study demonstrate that summarized hip and knee angular accelerations can be used complementary to whole-body training load indicators for evaluating soccer training and match play. The presented methodology provides insights in the training load of individual limbs, which potentially can be used to assess the effectiveness of specific training drills to under- or overload specific limbs. Trainers, coaches, and sport practitioners can use this information to balance training load and recovery in soccer, aiming to improve performance and prevent overload.

3.
J Neuroeng Rehabil ; 20(1): 145, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884944

RESUMO

BACKGROUND: Manual wheelchair propulsion is widely accepted to be biomechanically inefficient, with a high prevalence of shoulder pain and injuries among users. Directional control during wheelchair movement is a major, yet largely overlooked source of energy loss: changing direction or maintaining straightforward motion on tilted surfaces requires unilateral braking. This study evaluates the efficiency of a novel steering-by-leaning mechanism that guides wheelchair turning through upper body leaning. METHODS: 16 full-time wheelchair users and 15 able-bodied novices each completed 12 circuits of an adapted Illinois Agility Test-course that included tilted, straight, slalom, and 180° turning sections in a prototype wheelchair at a self-selected functional speed. Trials were alternated between conventional and steering-by-leaning modes while propulsion forces were recorded via instrumented wheelchair wheels. Time to completion, travelled distance, positive/negative power, and work done, were all calculated to allow comparison of the control modes using repeated measures analysis of variance. RESULTS: Substantial average energy reductions of 51% (able-bodied group) and 35% (wheelchair user group) to complete the task were observed when using the steering-by-leaning system. Simultaneously, able-bodied subjects were approximately 23% faster whereby completion times did not differ for wheelchair users. Participants in both groups wheeled some 10% further with the novel system. Differences were most pronounced during turning and on tilted surfaces where the steering-by-leaning system removed the need for braking for directional control. CONCLUSIONS: Backrest-actuated steering systems on manual wheelchairs can make a meaningful contribution towards reducing shoulder usage while contributing to independent living. Optimisation of propulsion techniques could further improve functional outcomes.


Assuntos
Ombro , Cadeiras de Rodas , Humanos , Fenômenos Biomecânicos , Extremidade Superior , Dor de Ombro
4.
Scand J Med Sci Sports ; 33(9): 1726-1737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37278319

RESUMO

The study aimed to explore the influence of a sports-specific intermittent sprint protocol (ISP) on wheelchair sprint performance and the kinetics and kinematics of sprinting in elite wheelchair rugby (WR) players with and without spinal cord injury (SCI). Fifteen international WR players (age 30.3 ± 5.5 years) performed two 10-s sprints on a dual roller wheelchair ergometer before and immediately after an ISP consisting of four 16-min quarters. Physiological measurements (heart rate, blood lactate concentration, and rating of perceived exertion) were collected. Three-dimensional thorax and bilateral glenohumeral kinematics were quantified. Following the ISP, all physiological parameters significantly increased (p ≤ 0.027), but neither sprinting peak velocity nor distance traveled changed. Players propelled with significantly reduced thorax flexion and peak glenohumeral abduction during both the acceleration (both -5°) and maximal velocity phases (-6° and 8°, respectively) of sprinting post-ISP. Moreover, players exhibited significantly larger mean contact angles (+24°), contact angle asymmetries (+4%), and glenohumeral flexion asymmetries (+10%) during the acceleration phase of sprinting post-ISP. Players displayed greater glenohumeral abduction range of motion (+17°) and asymmetries (+20%) during the maximal velocity phase of sprinting post-ISP. Players with SCI (SCI, n = 7) significantly increased asymmetries in peak power (+6%) and glenohumeral abduction (+15%) during the acceleration phase post-ISP. Our data indicates that despite inducing physiological fatigue resulting from WR match play, players can maintain sprint performance by modifying how they propel their wheelchair. Increased asymmetry post-ISP was notable, which may be specific to impairment type and warrants further investigation.


Assuntos
Desempenho Atlético , Futebol Americano , Cadeiras de Rodas , Humanos , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Futebol Americano/fisiologia , Rugby , Desempenho Atlético/fisiologia , Aceleração , Ácido Láctico
5.
J Biomech Eng ; 145(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345978

RESUMO

Wheelchair ergometers are widely used in research, clinical practice, and sports environments. The majority of wheelchair ergometers are roller systems that allow for wheelchair propulsion in the personal wheelchair on one or two (instrumented) rollers. Oftentimes these systems are only statically calibrated. However, wheelchair propulsion is dynamic by nature, requiring a dynamic validation process. The aim of the current project was to present a low-cost portable system for the dynamic metrological verification of wheelchair roller ergometers, based on an instrumented reference wheel. The tangential force on the roller is determined, along with its uncertainty, from the reference wheel properties, and compared with the force measured by the ergometer. Uncertainty of this reference wheel system was found to be lower than the one of the ergometer used, indicating that this novel approach can be used for the metrological verification of ergometers.


Assuntos
Ergometria , Cadeiras de Rodas , Fenômenos Biomecânicos
6.
Scand J Med Sci Sports ; 33(8): 1531-1540, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183537

RESUMO

This study investigated the effect of increased rolling resistance on wheelchair sprint performance and the concomitant force-velocity characteristics. Thirteen wheelchair rugby (WCR) athletes completed five 15 s wheelchair sprints in their own rugby wheelchair on an instrumented dual-roller wheelchair ergometer. The first sprint was performed against a close to overground resistance and in each of the following sprints, the resistance increased with 80% of that resistance. A repeated-measures ANOVA examined differences between sprints. Subsequently, linear regression analyses examined the individual force-velocity relations and then, individual parabolic power output curves were modeled. Increased rolling resistance led to significantly lower velocities (-36%), higher propulsion forces (+150%) and higher power outputs (+83%). These differences were accompanied by a lower push frequency, higher push time, yet a constant recovery time and contact angle. The modeled linear regressions (R2 = 0.71 ± 0.10) between force and velocity differed a lot in slope and intercept among individual athletes. The peak of the power output parabola (i.e., the optimal velocity) occurred on average at 3.1 ± 0.6 ms-1 . These individual force-velocity profiles can be used for training recommendations or technological changes to better exploit power generation capabilities of the WCR athletes' musculoskeletal system.


Assuntos
Desempenho Atlético , Paratletas , Cadeiras de Rodas , Humanos , Rugby , Ergometria , Atletas
7.
Am J Phys Med Rehabil ; 102(10): 886-895, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917041

RESUMO

OBJECTIVE: The aim of this study was to compare handrim wheelchair propulsion technique between individuals with spinal cord injury with and without shoulder pain. DESIGN: A cross-sectional study including 38 experienced handrim wheelchair users with spinal cord injury was conducted. Participants were divided into the "shoulder pain" ( n = 15) and "no-shoulder pain" ( n = 23) groups using the Local Musculoskeletal Discomfort scale. Kinetic and spatiotemporal aspects of handrim wheelchair propulsion during submaximal exercise on a motor-driven treadmill were analyzed. Data were collected using a measurement wheel instrumented with three-dimensional force sensors. RESULTS: After correction for confounders (time since injury and body height), linear regression analyses showed that the pain group had a 0.30-sec (95% confidence interval, -0.5 to -0.1) shorter cycle time, 0.22-sec (95% confidence interval, -0.4 to -0.1) shorter recovery time, 15.6 degrees (95% confidence interval, -27.4 to -3.8) smaller contact angle, and 8% (95% confidence interval, -15 to 0) lower variability in work per push compared with the no-pain group. Other parameters did not differ between groups. CONCLUSIONS: This study indicates that individuals with spinal cord injury who experience shoulder pain propel their handrim wheelchair kinematically differently from individuals with spinal cord injury without shoulder pain. This difference in propulsion technique might be a pain-avoiding mechanism aimed at decreasing shoulder range of motion.


Assuntos
Traumatismos da Medula Espinal , Cadeiras de Rodas , Humanos , Estudos Transversais , Traumatismos da Medula Espinal/complicações , Ombro , Dor de Ombro/etiologia , Fenômenos Biomecânicos
8.
Int J Sports Physiol Perform ; 18(1): 3-10, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455553

RESUMO

PURPOSE: To determine the test-retest reliability of the recently developed Hip Load metric, evaluate its construct validity, and assess the differences with Playerload during football-specific short-distance shuttle runs. METHODS: Eleven amateur football players participated in 2 identical experimental sessions. Each session included 3 different shuttle runs that were performed at 2 pace-controlled running intensities. The runs consisted of only running, running combined with kicks, and running combined with jumps. Cumulative Playerload and Hip Loads of the preferred and nonpreferred kicking leg were collected for each shuttle run. Test-retest reliability was determined using intraclass correlations, coefficients of variation, and Bland-Altman analyses. To compare the load metrics with each other, they were normalized to their respective values obtained during a 54-m run at 9 km/h. Sensitivity of each load metric to running intensity, kicks, and jumps was assessed using separate linear mixed models. RESULTS: Intraclass correlations were high for the Hip Loads of the preferred kicking leg (.91) and the nonpreferred kicking leg (.96) and moderate for the Playerload (.87). The effects (95% CIs) of intensity and kicks on the normalized Hip Load of the kicking leg (intensity: 0.95 to 1.50, kicks: 0.36 to 1.59) and nonkicking leg (intensity: 0.96 to 1.53, kicks: 0.06 to 1.34) were larger than on the normalized Playerload (intensity: 0.12 to 0.25, kicks: 0.22 to 0.53). CONCLUSIONS: The inclusion of Hip Load in training load quantification may help sport practitioners to better balance load and recovery.


Assuntos
Corrida , Futebol , Humanos , Reprodutibilidade dos Testes
9.
Am J Phys Med Rehabil ; 102(3): 261-269, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930864

RESUMO

ABSTRACT: Previous studies on handrim wheelchair-specific (an)aerobic exercise capacity in wheelchair athletes have used a diversity of participants, equipment, and protocols. Therefore, test results are difficult to compare among studies. The first aim of this scoping review is to provide an overview of the populations studied, the equipment and protocols used, and the reported outcomes from all laboratory-based studies on wheelchair-specific exercise capacity in wheelchair athletes. The second aim is to synthesize these findings into a standardized, yet individualized protocol. A scoping literature search resulted in 10 anaerobic and 38 aerobic protocols. A large variety in equipment, protocol design, and reported outcomes was found. Studies that systematically investigated the influence of protocol features are lacking, which makes it difficult to interpret and compare test outcomes among the heterogeneous group of wheelchair athletes. Protocol design was often dependent on a priori participant knowledge. However, specific guidelines for individualization were missing. However, the common protocol features of the different studies were united into guidelines that could be followed when performing standardized and individualized wheelchair-specific exercise capacity tests in wheelchair athletes. Together with guidelines regarding reporting of participant characteristics, used equipment, and outcome measures, we hope to work toward more international agreement in future testing.


Assuntos
Paratletas , Cadeiras de Rodas , Humanos , Tolerância ao Exercício , Teste de Esforço/métodos , Exercício Físico , Literatura de Revisão como Assunto
11.
Front Rehabil Sci ; 3: 862233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189002

RESUMO

Wheelchair tennis players are prone to develop shoulder injuries, due to the combination of wheelchair propulsion, overhead activities and daily wheelchair activities. A methodical literature search was conducted to identify articles on shoulder complaints in wheelchair tennis, wheelchair sports and tennis. The aims were to identify (1) type of shoulder complaints; (2) possible risk factors for the development of shoulder injuries; (3) musculoskeletal adaptations in the shoulder joint in wheelchair tennis players. Fifteen papers were included in this review, five on wheelchair tennis, three on wheelchair sports and seven on tennis. Type of shoulder complaints were acromioclavicular pathology, osteoarthritic changes, joint effusion and rotator cuff tears. Possible risk factors for the development of shoulder injuries in wheelchair tennis are overhead movements, repetitive activation of the anterior muscle chain and internal rotators, as well as a higher spinal cord injury level. Muscular imbalance with higher values for the internal rotators, increase in external range of motion, decrease in internal range of motion and reduced total arc of motion were the most common proposed musculoskeletal adaptations due to an unbalanced load. These presented risk factors and musculoskeletal adaptations might help researchers, coaches and wheelchair tennis players to prevent shoulder injuries.

12.
PLoS One ; 17(9): e0274255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067184

RESUMO

This study aims to evaluate whether a test protocol with standardized and individualized resistance settings leads to valid wheelchair Wingate tests (WAnT) and graded exercise tests (GXT) in healthy novices. Twenty able-bodied individuals (10M/10F, age 23 ± 2 years, body mass 72 ± 11 kg) performed an isometric strength test, sprint test, WAnT and GXT on a wheelchair ergometer. Using a previously developed set of regression equations, individuals' isometric strength outcome was used to estimate the WAnT result (P30est), from which an effective individual WAnT resistance was derived. The subsequently measured WAnT outcome (P30meas) was used to estimate the GXT outcome (POpeakest) and to scale the individual GXT resistance steps. Estimated and measured outcomes were compared. The WAnT protocol was considered valid when maximal velocity did not exceed 3 m·s-1; the GXT protocol was considered valid when test duration was 8-12 min. P30est did not significantly differ from P30meas, while one participant did not have a valid WanT, as maximal velocity exceeded 3 m·s-1. POpeakest was 10% higher than POpeakmeas, and six participants did not reach a valid GXT: five participants had a test duration under 8 min and one participant over 12 min. The isometric strength test can be used to individually scale the WAnT protocol. The WAnT outcome scaled the protocol for the GXT less accurately, resulting in mostly shorter-than-desired test durations. In conclusion, the evaluated standardized and individualized test protocol was valid for the WAnT but less valid for the GXT among a group of novices. Before implementing the standardized individual test protocol on a broader scale, e.g. among paralympic athletes, it should be evaluated among different athletic wheelchair-dependent populations.


Assuntos
Cadeiras de Rodas , Adulto , Anaerobiose , Ergometria , Exercício Físico , Teste de Esforço/métodos , Humanos , Consumo de Oxigênio , Adulto Jovem
13.
Eur J Hybrid Imaging ; 6(1): 17, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36045228

RESUMO

The detection of occult infections and low-grade inflammation in clinical practice remains challenging and much depending on readers' expertise. Although molecular imaging, like [18F]FDG PET or radiolabeled leukocyte scintigraphy, offers quantitative and reproducible whole body data on inflammatory responses its interpretation is limited to visual analysis. This often leads to delayed diagnosis and treatment, as well as untapped areas of potential application. Artificial intelligence (AI) offers innovative approaches to mine the wealth of imaging data and has led to disruptive breakthroughs in other medical domains already. Here, we discuss how AI-based tools can improve the detection sensitivity of molecular imaging in infection and inflammation but also how AI might push the data analysis beyond current application toward predicting outcome and long-term risk assessment.

14.
Appl Ergon ; 104: 103830, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35751939

RESUMO

A new wheelchair tennis hand rim was developed, having a larger contact area and higher friction. How does this new hand rim compare to a regular hand rim regarding submaximal propulsion with a tennis racket during practice in novices? Twenty-four able-bodied novices (12 Regular Rim, 12 New Rim) completed a one-day experiment: pre-test, three practice-sessions and a post-test of 3 × 4 min each on a wheelchair ergometer (1.11 m/s, 7W). The New Rim group compared to the Regular Rim group, had a lower negative work per cycle (-0.83J vs. -2.06J, p = 0.01) at the post-test. There was a significantly larger increase in mechanical efficiency between the pre- and post-test in the New Rim group (2.3-3.4% vs. 2.1-2.5%, p = 0.02) compared to the Regular Rim group. The new rim led to a more ergonomic propulsion technique, with a reduction in negative power and higher mechanical efficiency between the pre- and post-test at submaximal propulsion.


Assuntos
Tênis , Cadeiras de Rodas , Fenômenos Biomecânicos , Mãos , Humanos , Análise e Desempenho de Tarefas , Extremidade Superior
15.
Scand J Med Sci Sports ; 32(8): 1213-1223, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35620900

RESUMO

The study purpose was to examine the biomechanical characteristics of sports wheelchair propulsion and determine biomechanical associations with shoulder pain in wheelchair athletes. Twenty wheelchair court-sport athletes (age: 32 ± 11 years old) performed one submaximal propulsion trial in their sports-specific wheelchair at 1.67 m/s for 3 min and two 10 s sprints on a dual-roller ergometer. The Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI) assessed shoulder pain. During the acceleration phase of wheelchair sprinting, participants propelled with significantly longer push times, larger forces, and thorax flexion range of motion (ROM) than both the maximal velocity phase of sprinting and submaximal propulsion. Participants displayed significantly greater peak glenohumeral abduction and scapular internal rotation during the acceleration phase (20 ± 9° and 45 ± 7°) and maximal velocity phase (14 ± 4° and 44 ± 7°) of sprinting, compared to submaximal propulsion (12 ± 6° and 39 ± 8°). Greater shoulder pain severity was associated with larger glenohumeral abduction ROM (r = 0.59, p = 0.007) and scapular internal rotation ROM (r = 0.53, p = 0.017) during the acceleration phase of wheelchair sprinting, but with lower peak glenohumeral flexion (r = -0.49, p = 0.030), peak abduction (r = -0.48, p = 0.034), and abduction ROM (r = -0.44, p = 0.049) during the maximal velocity phase. Biomechanical characteristics of wheelchair sprinting suggest this activity imposes greater mechanical stress than submaximal propulsion. Kinematic associations with shoulder pain during acceleration are in shoulder orientations linked to a reduced subacromial space, potentially increasing tissue stress.


Assuntos
Articulação do Ombro , Cadeiras de Rodas , Adulto , Fenômenos Biomecânicos , Humanos , Ombro , Dor de Ombro , Extremidade Superior , Adulto Jovem
16.
Sports Biomech ; : 1-16, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35344475

RESUMO

Training load monitoring systems in football do not focus on lower extremities and therefore potentially neglect important information to optimise performance or reduce injury risk. The current study aims to present joint and segment angular accelerations as novel indicators to quantify lower extremity biomechanical load measured by a new inertial sensor setup. Relationships were explored with commonly used whole-body training load indicators using principal component analysis (PCA). Sixteen male amateur football players performed a linear sprint and an agility T-test. An inertial sensor setup, and local position measurement system were used to collect training load data. Hip Load, Knee Load, Thigh Load and Shank Load were introduced to quantify lower extremity biomechanical load. Three principal components were identified for both tests, explaining 91% and 86% of the variance. The indicators for the lower extremities contributed to the second principal component for both tests and provide distinct information compared to whole-body load indicators. The results show the potential to use an inertial sensor setup combined with common monitoring systems to evaluate training load, which may help optimise future performance and reduce injury risk. These relationships should be further examined during other football specific activities such as shooting or jumping.

17.
J Neuroeng Rehabil ; 19(1): 30, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35300710

RESUMO

BACKGROUND: Hand-rim wheelchair propulsion is straining and mechanically inefficient, often leading to upper limb complaints. Previous push-pull lever propulsion mechanisms have shown to perform better or equal in efficiency and physiological strain. Propulsion biomechanics have not been evaluated thus far. A novel push-pull central-lever propulsion mechanism is compared to conventional hand-rim wheelchair propulsion, using both physiological and biomechanical outcomes under low-intensity steady-state conditions on a motor driven treadmill. METHODS: In this 5 day (distributed over a maximum of 21 days) between-group experiment, 30 able-bodied novices performed 60 min (5 × 3 × 4 min) of practice in either the push-pull central lever wheelchair (n = 15) or the hand-rim wheelchair (n = 15). At the first and final sessions cardiopulmonary strain, propulsion kinematics and force production were determined in both instrumented propulsion mechanisms. Repeated measures ANOVA evaluated between (propulsion mechanism type), within (over practice) and interaction effects. RESULTS: Over practice, both groups significantly improved on all outcome measures. After practice the peak forces during the push and pull phase of lever propulsion were considerably lower compared to those in the handrim push phase (42 ± 10 & 46 ± 10 vs 63 ± 21N). Concomitantly, energy expenditure was found to be lower as well (263 ± 45 vs 298 ± 59W), on the other hand gross mechanical efficiency (6.4 ± 1.5 vs 5.9 ± 1.3%), heart-rate (97 ± 10 vs 98 ± 10 bpm) and perceived exertion (9 ± 2 vs 10 ± 1) were not significantly different between modes. CONCLUSION: The current study shows the potential benefits of the newly designed push-pull central-lever propulsion mechanism over regular hand rim wheelchair propulsion. The much lower forces and energy expenditure might help to reduce the strain on the upper extremities and thus prevent the development of overuse injury. This proof of concept in a controlled laboratory experiment warrants continued experimental research in wheelchair-users during daily life.


Assuntos
Cadeiras de Rodas , Fenômenos Biomecânicos , Teste de Esforço , Humanos , Fenômenos Mecânicos , Extremidade Superior
20.
J Shoulder Elbow Surg ; 31(2): 382-390, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34619349

RESUMO

BACKGROUND: The Latitude total elbow prosthesis is a third-generation implant, developed to restore the natural anatomy of the elbow. Literature on this prosthesis is scarce. The aim of this study was to analyze the mid-term results of the Latitude total elbow prosthesis. METHODS: We retrospectively evaluated 62 patients (21 men and 41 women). The mean age at the time of surgery was 65 years (range, 28-87 years). The main indication for surgery was inflammatory arthritis. The outcome measures were complications, reoperations, self-reported physical functioning, pain, satisfaction, objectively measured physical functioning, and radiologic signs of loosening. Kaplan-Meier survival analysis was used to determine survival with revision as the endpoint. RESULTS: Sixty-nine primary Latitude prostheses were placed in 62 patients between 2008 and 2019. Six patients (7 prostheses) died, 3 elbows underwent revision, and 9 patients were lost to follow-up. A total of 44 patients (50 prostheses) were available for follow-up. The mean length of follow-up was 51 months (range, 10-144 months). Kaplan-Meier survival analysis showed a survival rate of 82% at 10 years after surgery. The main reason for revision was aseptic loosening. Radial head dissociation was seen in 8 patients (24%), but none had complaints. Self-reported and objectively measured physical functioning yielded good results, although 23 patients (46%) did show radiolucent lines on radiographs. CONCLUSION: Latitude total elbow arthroplasty is considered a successful procedure with low pain scores, high patient satisfaction, and good physical functioning. Survival rates nonetheless remain low and complication rates remain high yet are comparable to those of other elbow arthroplasties. We recommend biomechanical studies to concentrate on specific postoperative loading instructions to minimize wear and consequent loosening.


Assuntos
Artroplastia de Substituição do Cotovelo , Articulação do Cotovelo , Prótese de Cotovelo , Cotovelo , Articulação do Cotovelo/diagnóstico por imagem , Articulação do Cotovelo/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Falha de Prótese , Amplitude de Movimento Articular , Reoperação , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...