Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 35(22): 2399-2416, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27572462

RESUMO

Unfavorable patient survival coincides with lineage plasticity observed in human acute leukemias. These cases are assumed to arise from hematopoietic stem cells, which have stable multipotent differentiation potential. However, here we report that plasticity in leukemia can result from instable lineage identity states inherited from differentiating progenitor cells. Using mice with enhanced c-Myc expression, we show, at the single-cell level, that T-lymphoid progenitors retain broad malignant lineage potential with a high capacity to differentiate into myeloid leukemia. These T-cell-derived myeloid blasts retain expression of a defined set of T-cell transcription factors, creating a lymphoid epigenetic memory that confers growth and propagates myeloid/T-lymphoid plasticity. Based on these characteristics, we identified a correlating human leukemia cohort and revealed targeting of Jak2/Stat3 signaling as a therapeutic possibility. Collectively, our study suggests the thymus as a source for myeloid leukemia and proposes leukemic plasticity as a driving mechanism. Moreover, our results reveal a pathway-directed therapy option against thymus-derived myeloid leukemogenesis and propose a model in which dynamic progenitor differentiation states shape unique neoplastic identities and therapy responses.


Assuntos
Transdiferenciação Celular , Leucemia Mieloide/patologia , Células Progenitoras Linfoides/fisiologia , Linfócitos T/fisiologia , Animais , Humanos , Camundongos
2.
Blood ; 127(12): 1575-86, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26729896

RESUMO

The de novo DNA methyltransferases Dnmt3a and Dnmt3b are of crucial importance in hematopoietic stem cells. Dnmt3b has recently been shown to play a role in genic methylation. To investigate how Dnmt3b-mediated DNA methylation affects leukemogenesis, we analyzed leukemia development under conditions of high and physiological methylation levels in a tetracycline-inducible knock-in mouse model. High expression of Dnmt3b slowed leukemia development in serial transplantations and impaired leukemia stem cell (LSC) function. Forced Dnmt3b expression induced widespread DNA hypermethylation inMyc-Bcl2-induced leukemias, preferentially at gene bodies.MLL-AF9-induced leukemogenesis showed much less pronounced DNA hypermethylation upon Dnmt3b expression. Nonetheless, leukemogenesis was delayed in both models with a shared core set of DNA hypermethylated regions and suppression of stem cell-related genes. Acute myeloid leukemia patients with high expression of Dnmt3b target genes showed inferior survival. Together, these findings indicate a critical role for Dnmt3b-mediated DNA methylation in leukemia development and maintenance of LSC function.


Assuntos
Carcinogênese/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Animais , Carcinogênese/patologia , Técnicas de Introdução de Genes , Hematopoese , Humanos , Leucemia/diagnóstico , Leucemia/patologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Regiões Promotoras Genéticas , DNA Metiltransferase 3B
3.
Cell Rep ; 3(5): 1617-28, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23623495

RESUMO

Dendritic cells (DCs) are essential regulators of immune responses; however, transcriptional mechanisms that establish DC lineage commitment are poorly defined. Here, we report that the PU.1 transcription factor induces specific remodeling of the higher-order chromatin structure at the interferon regulatory factor 8 (Irf8) gene to initiate DC fate choice. An Irf8 reporter mouse enabled us to pinpoint an initial progenitor stage at which DCs separate from other myeloid lineages in the bone marrow. In the absence of Irf8, this progenitor undergoes DC-to-neutrophil reprogramming, indicating that DC commitment requires an active, Irf8-dependent escape from alternative myeloid lineage potential. Mechanistically, myeloid Irf8 expression depends on high PU.1 levels, resulting in local chromosomal looping and activation of a lineage- and developmental-stage-specific cis-enhancer. These data delineate PU.1 as a concentration-dependent rheostat of myeloid lineage selection by controlling long-distance contacts between regulatory elements and suggest that specific higher-order chromatin remodeling at the Irf8 gene determines DC differentiation.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Células Dendríticas/citologia , Fatores Reguladores de Interferon/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/química , Transativadores/química
4.
Nat Neurosci ; 16(3): 273-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23334579

RESUMO

Microglia are crucial for immune responses in the brain. Although their origin from the yolk sac has been recognized for some time, their precise precursors and the transcription program that is used are not known. We found that mouse microglia were derived from primitive c-kit(+) erythromyeloid precursors that were detected in the yolk sac as early as 8 d post conception. These precursors developed into CD45(+) c-kit(lo) CX(3)CR1(-) immature (A1) cells and matured into CD45(+) c-kit(-) CX(3)CR1(+) (A2) cells, as evidenced by the downregulation of CD31 and concomitant upregulation of F4/80 and macrophage colony stimulating factor receptor (MCSF-R). Proliferating A2 cells became microglia and invaded the developing brain using specific matrix metalloproteinases. Notably, microgliogenesis was not only dependent on the transcription factor Pu.1 (also known as Sfpi), but also required Irf8, which was vital for the development of the A2 population, whereas Myb, Id2, Batf3 and Klf4 were not required. Our data provide cellular and molecular insights into the origin and development of microglia.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Fatores Reguladores de Interferon/metabolismo , Microglia/citologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Fator 4 Semelhante a Kruppel , Camundongos , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
5.
Blood ; 118(8): 2275-84, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21730352

RESUMO

The differentiation of HSCs into myeloid lineages requires the transcription factor PU.1. Whereas PU.1-dependent induction of myeloid-specific target genes has been intensively studied, negative regulation of stem cell or alternate lineage programs remains incompletely characterized. To test for such negative regulatory events, we searched for PU.1-controlled microRNAs (miRs) by expression profiling using a PU.1-inducible myeloid progenitor cell line model. We provide evidence that PU.1 directly controls expression of at least 4 of these miRs (miR-146a, miR-342, miR-338, and miR-155) through temporally dynamic occupation of binding sites within regulatory chromatin regions adjacent to their genomic coding loci. Ectopic expression of the most robustly induced PU.1 target miR, miR-146a, directed the selective differentiation of HSCs into functional peritoneal macrophages in mouse transplantation assays. In agreement with this observation, disruption of Dicer expression or specific antagonization of miR-146a function inhibited the formation of macrophages during early zebrafish (Danio rerio) development. In the present study, we describe a PU.1-orchestrated miR program that mediates key functions of PU.1 during myeloid differentiation.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Mielopoese/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno/genética , Transativadores/antagonistas & inibidores , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...