Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cancer Res ; 82(20): 3785-3801, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35979635

RESUMO

Agonistic αCD40 therapy has been shown to inhibit cancer progression in only a fraction of patients. Understanding the cancer cell-intrinsic and microenvironmental determinants of αCD40 therapy response is therefore crucial to identify responsive patient populations and to design efficient combinatorial treatments. Here, we show that the therapeutic efficacy of αCD40 in subcutaneous melanoma relies on preexisting, type 1 classical dendritic cell (cDC1)-primed CD8+ T cells. However, after administration of αCD40, cDC1s were dispensable for antitumor efficacy. Instead, the abundance of activated cDCs, potentially derived from cDC2 cells, increased and further activated antitumor CD8+ T cells. Hence, distinct cDC subsets contributed to the induction of αCD40 responses. In contrast, lung carcinomas, characterized by a high abundance of macrophages, were resistant to αCD40 therapy. Combining αCD40 therapy with macrophage depletion led to tumor growth inhibition only in the presence of strong neoantigens. Accordingly, treatment with immunogenic cell death-inducing chemotherapy sensitized lung tumors to αCD40 therapy in subcutaneous and orthotopic settings. These insights into the microenvironmental regulators of response to αCD40 suggest that different tumor types would benefit from different combinations of therapies to optimize the clinical application of CD40 agonists. SIGNIFICANCE: This work highlights the temporal roles of different dendritic cell subsets in promoting CD8+ T-cell-driven responses to CD40 agonist therapy in cancer.


Assuntos
Antígenos CD40 , Células Dendríticas , Macrófagos , Neoplasias , Animais , Antígenos CD40/agonistas , Linfócitos T CD8-Positivos , Células Dendríticas/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo
2.
Oncoimmunology ; 11(1): 2063225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481289

RESUMO

While regulatory T cells (Tregs) and macrophages have been recognized as key orchestrators of cancer-associated immunosuppression, their cellular crosstalk within tumors has been poorly characterized. Here, using spontaneous models for breast cancer, we demonstrate that tumor-associated macrophages (TAMs) contribute to the intratumoral accumulation of Tregs by promoting the conversion of conventional CD4+ T cells (Tconvs) into Tregs. Mechanistically, two processes were identified that independently contribute to this process. While TAM-derived TGF-ß directly promotes the conversion of CD4+ Tconvs into Tregsin vitro, we additionally show that TAMs enhance PD-1 expression on CD4+ T cells. This indirectly contributes to the intratumoral accumulation of Tregs, as loss of PD-1 on CD4+ Tconvs abrogates intratumoral conversion of adoptively transferred CD4+ Tconvs into Tregs. Combined, this study provides insights into the complex immune cell crosstalk between CD4+ T cells and TAMs in the tumor microenvironment of breast cancer, and further highlights that therapeutic exploitation of macrophages may be an attractive immune intervention to limit the accumulation of Tregs in breast tumors.


Assuntos
Neoplasias da Mama , Linfócitos T Reguladores , Feminino , Humanos , Tolerância Imunológica , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Macrófagos Associados a Tumor
3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613562

RESUMO

Bacillus Calmette-Guérin (BCG) instillations for the treatment of non-muscle-invasive bladder cancer patients can result in significant side effects and treatment failure. Immune checkpoint blockade and/or decreasing tumor-infiltrating myeloid suppressor cells may be alternative or complementary treatments. Here, we have characterized immune cell infiltration and chemoattractant molecules in mouse orthotopic MB49 bladder tumors. Our data show a 100-fold increase in CD45+ immune cells from day 5 to day 9 tumors including T cells and mainly myeloid cells. Both monocytic myeloid-derived suppressor-cells (M-MDSC) and polymorphonuclear (PMN)-MDSC were strongly increased in day 9 tumors, with PMN-MDSC representing ca. 70% of the myeloid cells in day 12 tumors, while tumor associated macrophages (TAM) were only modestly increased. The kinetic of PD-L1 tumor expression correlated with published data from patients with PD-L1 expressing bladder tumors and with efficacy of anti-PD-1 treatment, further validating the orthotopic MB49 bladder-tumor model as suitable for designing novel therapeutic strategies. Comparison of chemoattractants expression during MB49 bladder tumors grow highlighted CCL8 and CCL12 (CCR2-ligands), CCL9 and CCL6 (CCR-1-ligands), CXCL2 and CXCL5 (CXCR2-ligands), CXCL12 (CXCR4-ligand) and antagonist of C5/C5a as potential targets to decrease myeloid suppressive cells. Data obtained with a single CCR2 inhibitor however showed that the complex chemokine crosstalk would require targeting multiple chemokines for anti-tumor efficacy.


Assuntos
Antígeno B7-H1 , Neoplasias da Bexiga Urinária , Animais , Camundongos , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Células Mieloides/metabolismo , Quimiocinas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Sci Transl Med ; 13(606)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380768

RESUMO

Immune checkpoint blockade (ICB) with PD-1 or PD-L1 antibodies has been approved for the treatment of non-small cell lung cancer (NSCLC). However, only a minority of patients respond, and sustained remissions are rare. Both chemotherapy and antiangiogenic drugs may improve the efficacy of ICB in mouse tumor models and patients with cancer. Here, we used genetically engineered mouse models of Kras G12D/+;p53 -/- NSCLC, including a mismatch repair-deficient variant (Kras G12D/+;p53 -/-;Msh2 -/-) with higher mutational burden, and longitudinal imaging to study tumor response and resistance to combinations of ICB, antiangiogenic therapy, and chemotherapy. Antiangiogenic blockade of vascular endothelial growth factor A and angiopoietin-2 markedly slowed progression of autochthonous lung tumors, but contrary to findings in other cancer types, addition of a PD-1 or PD-L1 antibody was not beneficial and even accelerated progression of a fraction of the tumors. We found that antiangiogenic treatment facilitated tumor infiltration by PD-1+ regulatory T cells (Tregs), which were more efficiently targeted by the PD-1 antibody than CD8+ T cells. Both tumor-associated macrophages (TAMs) of monocyte origin, which are colony-stimulating factor 1 receptor (CSF1R) dependent, and TAMs of alveolar origin, which are sensitive to cisplatin, contributed to establish a transforming growth factor-ß-rich tumor microenvironment that supported PD-1+ Tregs Dual TAM targeting with a combination of a CSF1R inhibitor and cisplatin abated Tregs, redirected the PD-1 antibody to CD8+ T cells, and improved the efficacy of antiangiogenic immunotherapy, achieving regression of most tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
5.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135110

RESUMO

Colony-stimulating factor 1 receptor (CSF1R) blockade abates tumor-associated macrophage (TAM) infiltrates and provides marked clinical benefits in diffuse-type tenosynovial giant cell tumors. However, facial edema is a common adverse event associated with TAM elimination in patients. In this study, we examined molecular and cellular events associated with edema formation in mice and human patients with cancer treated with a CSF1R blocking antibody. Extended antibody treatment of mice caused marked body weight gain, an indicator of enhanced body fluid retention. This was associated with an increase of extracellular matrix-remodeling metalloproteinases (MMPs), namely MMP2 and MMP3, and enhanced deposition of hyaluronan (HA) and proteoglycans, leading to skin thickening. Discontinuation of anti-CSF1R treatment or blockade of MMP activity restored unaltered body weight and normal skin morphology in the mice. In patients, edema developed at doses well below the established optimal biological dose for emactuzumab, a CSF1R dimerization inhibitor. Patients who developed edema in response to emactuzumab had elevated HA in peripheral blood. Our findings indicate that an early increase of peripheral HA can serve as a pharmacodynamic marker for edema development and suggest potential interventions based on MMP inhibition for relieving periorbital edema in patients treated with CSF1R inhibitors.


Assuntos
Edema , Macrófagos , Neoplasias , Peptídeo Hidrolases , Proteoglicanas , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Humanos , Camundongos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
6.
Cancers (Basel) ; 13(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063518

RESUMO

Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.

7.
Eur J Cancer ; 141: 162-170, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161240

RESUMO

OBJECTIVES: This study investigated the safety, clinical activity and patient-reported outcomes of patients with diffuse-type tenosynovial giant-cell tumour (dTGCT) of the soft tissue who were treated with emactuzumab, a humanised anti-colony stimulating factor 1 receptor (CSF1R) monoclonal antibody and were followed up for up to 2 years after the start of treatment. METHODS: In this open-label phase 1 study (ClinicalTrials.govNCT01494688), patients received intravenous (IV) emactuzumab from 900 to 2000 mg every two weeks in the dose-escalation phase and at the optimal biological dose of 1000 mg with different schedules in the dose-expansion phase. Adverse event (AE) rates and biomarker assessments from tumour biopsies were analysed. Quality of life was assessed using a standard questionnaire (EuroQol-5D-3L) and the WOMAC® 3.1 Osteoarthritis Index. Tumour responses were determined with magnetic resonance imaging. RESULTS: Altogether, 63 patients were enrolled into the study. The most frequently reported AEs were pruritus, asthenia and oedema. In 36 patients for whom biopsy tissue was available a substantial decrease of CSF1R-positive and CD68/CD163-positive macrophages was detected. The independently reviewed best overall objective response rate (ORR) (Response Evaluation Criteria in Solid Tumors version 1.1) was 71%. Responses were durable, and an ORR of 70% and 64% was determined after one or two years after enrolment into the study. Clinical activity was accompanied by an improvement in EuroQol-5D-3L and particularly the joint disorder-specific WOMAC score. CONCLUSIONS: Systemic therapy of dTGCT patients with emactuzumab resulted in pronounced and durable responses associated with symptomatic improvement and a manageable safety profile.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Qualidade de Vida , Sinovite Pigmentada Vilonodular/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Front Immunol ; 11: 2082, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013879

RESUMO

Particular interest to harness the innate immune system for cancer immunotherapy is fueled by limitations of immune checkpoint blockade. Plasmacytoid dendritic cells (pDC) are detected in a variety of solid tumors and correlate with poor clinical outcome. Release of type I interferons in response to toll-like-receptor (TLR)7 and TLR9 activation is the pDC hallmark. Mouse and human pDC differ substantially in their biology concerning surface marker expression and cytokine production. Here, we employed humanized mouse models (HIS) to study pDC function. We performed a comprehensive characterization of transgenic, myeloid-enhanced mouse strains (NOG-EXL and NSG-SGM3) expressing human interleukin-3 (hIL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) using identical humanization protocols. Only in HIS-NOG-EXL mice sufficient pDC infiltration was detectable. Therefore, we selected this strain for subsequent tumor studies. We analyzed pDC frequency in peripheral blood and tumors by comparing HIS-NOG-EXL with HIS-NOG mice bearing three different ovarian and breast tumors. Despite the substantially increased pDC numbers in peripheral blood of HIS-NOG-EXL mice, we detected TLR7/8 agonist responsive and thus functional pDCs only in certain tumor models independent of the mouse strain employed. However, HIS-NOG-EXL mice showed in general a superior humanization phenotype characterized by reconstitution of different myeloid subsets, NK cells and B cells producing physiologic IgG levels. Hence, we provide first evidence that the tumor milieu but not genetically introduced cytokines defines intratumoral (i.t.) frequencies of the rare pDC subset. This study provides model systems to investigate in vivo pro- and anti-tumoral human pDC functions.


Assuntos
Linfócitos B/imunologia , Carcinoma Epitelial do Ovário/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Interleucina-3/genética , Camundongos , Camundongos SCID , Camundongos Transgênicos , Microambiente Tumoral
9.
Cancer Immunol Res ; 8(9): 1180-1192, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661095

RESUMO

Bladder cancer is one of the most common malignancies and has poor prognosis for patients with locally advanced, muscle-invasive, disease despite the efficacy of immune checkpoint blockade. To develop more effective immunotherapy strategies, we studied a genetic mouse model carrying deletion of Tp53 and Pten in the bladder, which recapitulates bladder cancer tumorigenesis and gene expression patterns found in patients. We discovered that tumor cells became more malignant and the tumor immune microenvironment evolved from an inflammatory to an immunosuppressive state. Accordingly, treatment with anti-PD1 was ineffective, but resistance to anti-PD1 therapy was overcome by combination with a CD40 agonist (anti-CD40), leading to strong antitumor immune responses. Mechanistically, this combination led to CD8+ T-cell recruitment from draining lymph nodes. CD8+ T cells induced an IFNγ-dependent repolarization toward M1-like/IFNß-producing macrophages. CD8+ T cells, macrophages, IFN I, and IFN II were all necessary for tumor control, as demonstrated in vivo by the administration of blocking antibodies. Our results identify essential cross-talk between innate and adaptive immunity to control tumor development in a model representative of anti-PD1-resistant human bladder cancer and provide scientific rationale to target CD40 in combination with blocking antibodies, such as anti-PD1/PD-L1, for muscle-invasive bladder cancer.


Assuntos
Antígenos CD40/agonistas , Imunoterapia/métodos , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos
10.
Clin Transl Immunology ; 9(2): e1108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082570

RESUMO

OBJECTIVES: The accumulation of tumor-associated macrophages (TAMs) is correlated with poor clinical outcome, but the mechanisms governing their differentiation from circulating monocytes remain unclear in humans. METHODS: Using multicolor flow cytometry, we evaluated TAMs phenotype in 93 breast cancer (BC) patients. Furthermore, monocytes from healthy donors were cultured in the presence of supernatants from dilacerated primary tumors to investigate their differentiation into macrophages (MΦ) in vitro. Additionally, we used transcriptomic analysis to evaluate BC patients' blood monocytes profiles. RESULTS: We observed that high intra-tumor CD163-expressing TAM density is predictive of reduced survival in BC patients. In vitro, M-CSF, TGF-ß and VEGF from primary tumor supernatants skewed the differentiation of healthy donor blood monocytes towards CD163highCD86lowIL-10high M2-like MΦ that strongly suppressed CD4+ T-cell expansion via PD-L1 and IL-10. In addition, blood monocytes from about 40% of BC patients displayed an altered response to in vitro stimulation, being refractory to type-1 MΦ (M1-MΦ) differentiation and secreting higher amounts of immunosuppressive, metastatic-related and angiogenic cytokines. Aside from showing that monocyte transcriptome is significantly altered by the presence of BC, we also demonstrated an overall metabolic de-activation in refractory monocytes of BC patients. In contrast, monocytes from sensitive BC patients undergoing normal M1-MΦ differentiation showed up-regulation of IFN-response genes and had no signs of metabolic alteration. CONCLUSION: Altogether, our results suggest that systemic factors skew BC patient blood monocytes towards a pro-metastatic profile, resulting in the accumulation of further polarised CD163high TAMs resembling type-2 MΦ (M2-MΦ) in the local BC microenvironment. These data indicate that monitoring circulating monocytes in BC patients may provide an indication of early systemic alterations induced by cancer and, thus, be instrumental in the development of improved personalised immunotherapeutic interventions.

11.
Proc Natl Acad Sci U S A ; 117(1): 541-551, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31889004

RESUMO

Cancer immunotherapies are increasingly combined with targeted therapies to improve therapeutic outcomes. We show that combination of agonistic anti-CD40 with antiangiogenic antibodies targeting 2 proangiogenic factors, vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (Ang2/ANGPT2), induces pleiotropic immune mechanisms that facilitate tumor rejection in several tumor models. On the one hand, VEGFA/Ang2 blockade induced regression of the tumor microvasculature while decreasing the proportion of nonperfused vessels and reducing leakiness of the remaining vessels. On the other hand, both anti-VEGFA/Ang2 and anti-CD40 independently promoted proinflammatory macrophage skewing and increased dendritic cell activation in the tumor microenvironment, which were further amplified upon combination of the 2 treatments. Finally, combined therapy provoked brisk infiltration and intratumoral redistribution of cytotoxic CD8+ T cells in the tumors, which was mainly driven by Ang2 blockade. Overall, these nonredundant synergistic mechanisms endowed T cells with improved effector functions that were conducive to more efficient tumor control, underscoring the therapeutic potential of antiangiogenic immunotherapy in cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígenos CD40/agonistas , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígenos CD40/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
PLoS One ; 14(7): e0219517, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291357

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has a high mortality rate due to limited treatment options. Hence, the response of HCC to different cancer immunotherapies is being intensively investigated in clinical trials. Immune checkpoint blockers (ICB) show promising results, albeit for a minority of HCC patients. Mouse models are commonly used to evaluate new therapeutic agents or regimens. However, to make clinical translation more successful, better characterized preclinical models are required. We therefore extensively investigated two immune-competent orthotopic HCC mouse models, namely transplanted Hep-55.1c and transgenic iAST, with respect to morphological, immunological and genetic traits and evaluated both models' responsiveness to immunotherapies. Hep-55.1c tumors were characterized by rich fibrous stroma, high mutational load and pronounced immune cell infiltrates, all of which are features of immune-responsive tumors. These characteristics were less distinct in iAST tumors, though these were highly vascularized. Cell depletion revealed that CD8+ T cells from iAST mice do not affect tumor growth and are tumor tolerant. This corresponds to the failure of single and combined ICB targeting PD-1 and CTLA-4. In contrast, combining anti-PD-1 and anti-CTLA-4 showed significant antitumor efficacy in the Hep-55.1c mouse model. Collectively, our data comprehensively characterize two immune-competent HCC mouse models representing ICB responsive and refractory characteristics. Our characterization confirms these models to be suitable for preclinical investigation of novel cancer immunotherapy approaches that aim to either deepen preexisting immune responses or generate de novo immunity against the tumor.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Modelos Animais de Doenças , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antígenos Transformantes de Poliomavirus/genética , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral/transplante , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
13.
Cell Rep ; 27(10): 3062-3080.e11, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167148

RESUMO

Extracellular vesicles (EVs), including exosomes, modulate multiple aspects of cancer biology. Tumor-associated macrophages (TAMs) secrete EVs, but their molecular features and functions are poorly characterized. Here, we report methodology for the enrichment, quantification, and proteomic and lipidomic analysis of EVs released from mouse TAMs (TAM-EVs). Compared to source TAMs, TAM-EVs present molecular profiles associated with a Th1/M1 polarization signature, enhanced inflammation and immune response, and a more favorable patient prognosis. Accordingly, enriched TAM-EV preparations promote T cell proliferation and activation ex vivo. TAM-EVs also contain bioactive lipids and biosynthetic enzymes, which may alter pro-inflammatory signaling in the cancer cells. Thus, whereas TAMs are largely immunosuppressive, their EVs may have the potential to stimulate, rather than limit, anti-tumor immunity.


Assuntos
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Animais , Anticorpos/uso terapêutico , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Proteoma/análise , Proteômica , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Transplante Homólogo
14.
Hepatology ; 70(4): 1280-1297, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31002440

RESUMO

Antiangiogenic and cytotoxic effects are considered the principal mechanisms of action of sorafenib, a multitarget kinase inhibitor approved for the treatment of hepatocellular carcinoma (HCC). We report that sorafenib also acts through direct immune modulation, indispensable for its antitumor activity. In vivo cell depletion experiments in two orthotopic HCC mouse models as well as in vitro analysis identified macrophages (MΦ) as the key mediators of the antitumoral effect and demonstrate a strong interdependency of MΦ and natural killer (NK) cells for efficient tumor cell killing. Caspase 1 analysis in sorafenib-treated MΦ revealed an induction of pyroptosis. As a result, cytotoxic NK cells become activated when cocultured with sorafenib-treated MΦ, leading to tumor cell death. In addition, sorafenib was found to down-regulate major histocompatibility complex class I expression of tumor cells, which may reduce the tumor responsiveness to immune checkpoint therapies and favor NK-cell response. In vivo cytokine blocking revealed that sorafenib efficacy is abrogated after inhibition of interleukins 1B and 18. Conclusion: We report an immunomodulatory mechanism of sorafenib involving MΦ pyroptosis and unleashing of an NK-cell response that sets it apart from other spectrum kinase inhibitors as a promising immunotherapy combination partner for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Células Matadoras Naturais/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Piroptose/efeitos dos fármacos , Sorafenibe/farmacologia , Análise de Variância , Animais , Carcinoma Hepatocelular/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Injeções Intravenosas , Neoplasias Hepáticas/patologia , Macrófagos , Camundongos , Camundongos Transgênicos , Distribuição Aleatória , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Microtomografia por Raio-X/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Cell Biol ; 21(4): 511-521, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886344

RESUMO

Recent studies have revealed a role for macrophages and neutrophils in limiting chemotherapy efficacy; however, the mechanisms underlying the therapeutic benefit of myeloid-targeting agents in combination with chemotherapy are incompletely understood. Here, we show that targeting tumour-associated macrophages by colony-stimulating factor-1 receptor (CSF-1R) blockade in the K14cre;Cdh1F/F;Trp53F/F transgenic mouse model for breast cancer stimulates intratumoural type I interferon (IFN) signalling, which enhances the anticancer efficacy of platinum-based chemotherapeutics. Notably, anti-CSF-1R treatment also increased intratumoural expression of type I IFN-stimulated genes in patients with cancer, confirming that CSF-1R blockade is a powerful strategy to trigger an intratumoural type I IFN response. By inducing an inflamed, type I IFN-enriched tumour microenvironment and by further targeting immunosuppressive neutrophils during cisplatin therapy, antitumour immunity was activated in this poorly immunogenic breast cancer mouse model. These data illustrate the importance of breaching multiple layers of immunosuppression during cytotoxic therapy to successfully engage antitumour immunity in breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Interferon Tipo I/fisiologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/secundário , Camundongos , Camundongos Knockout , Camundongos Transgênicos
16.
J Immunol ; 201(8): 2273-2286, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30209192

RESUMO

Immunotherapy with checkpoint inhibitors has proved to be highly effective, with durable responses in a subset of patients. Given their encouraging clinical activity, checkpoint inhibitors are increasingly being tested in clinical trials in combination with chemotherapy. In many instances, there is little understanding of how chemotherapy might influence the quality of the immune response generated by checkpoint inhibitors. In this study, we evaluated the impact of chemotherapy alone or in combination with anti-PD-L1 in a responsive syngeneic tumor model. Although multiple classes of chemotherapy treatment reduced immune cell numbers and activity in peripheral tissues, chemotherapy did not antagonize but in many cases augmented the antitumor activity mediated by anti-PD-L1. This dichotomy between the detrimental effects in peripheral tissues and enhanced antitumor activity was largely explained by the reduced dependence on incoming cells for antitumor efficacy in already established tumors. The effects of the various chemotherapies were also agent specific, and synergy with anti-PD-L1 was achieved by different mechanisms that ultimately helped establish a new threshold for response. These results rationalize the combination of chemotherapy with immunotherapy and suggest that, despite the negative systemic effects of chemotherapy, effective combinations can be obtained through distinct mechanisms acting within the tumor.


Assuntos
Adenocarcinoma/terapia , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Neoplasias do Colo/terapia , Imunoterapia/métodos , Adenocarcinoma/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Feminino , Citometria de Fluxo , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Carga Tumoral/efeitos dos fármacos
17.
Sci Transl Med ; 10(436)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643229

RESUMO

Colony-stimulating factor 1 (CSF1) is a key regulator of monocyte/macrophage differentiation that sustains the protumorigenic functions of tumor-associated macrophages (TAMs). We show that CSF1 is expressed in human melanoma, and patients with metastatic melanoma have increased CSF1 in blood compared to healthy subjects. In tumors, CSF1 expression correlated with the abundance of CD8+ T cells and CD163+ TAMs. Human melanoma cell lines consistently produced CSF1 after exposure to melanoma-specific CD8+ T cells or T cell-derived cytokines in vitro, reflecting a broadly conserved mechanism of CSF1 induction by activated CD8+ T cells. Mining of publicly available transcriptomic data sets suggested co-enrichment of CD8+ T cells with CSF1 or various TAM-specific markers in human melanoma, which was associated with nonresponsiveness to programmed cell death protein 1 (PD1) checkpoint blockade in a smaller patient cohort. Combination of anti-PD1 and anti-CSF1 receptor (CSF1R) antibodies induced the regression of BRAFV600E -driven, transplant mouse melanomas, a result that was dependent on the effective elimination of TAMs. Collectively, these data implicate CSF1 induction as a CD8+ T cell-dependent adaptive resistance mechanism and show that simultaneous CSF1R targeting may be beneficial in melanomas refractory to immune checkpoint blockade and, possibly, other T cell-based therapies.


Assuntos
Fator Estimulador de Colônias de Macrófagos/sangue , Melanoma/sangue , Melanoma/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Macrófagos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
18.
Cell Rep ; 22(10): 2530-2540, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514082

RESUMO

Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA+ stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2), an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R) antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs.


Assuntos
Moléculas de Adesão Celular/metabolismo , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Camundongos Transgênicos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Tumores Neuroendócrinos/irrigação sanguínea , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
J Exp Med ; 215(3): 859-876, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29436396

RESUMO

Depletion of immunosuppressive tumor-associated macrophages (TAMs) or reprogramming toward a proinflammatory activation state represent different strategies to therapeutically target this abundant myeloid population. In this study, we report that inhibition of colony-stimulating factor-1 receptor (CSF-1R) signaling sensitizes TAMs to profound and rapid reprogramming in the presence of a CD40 agonist before their depletion. Despite the short-lived nature of macrophage hyperactivation, combined CSF-1R+CD40 stimulation of macrophages is sufficient to create a proinflammatory tumor milieu that reinvigorates an effective T cell response in transplanted tumors that are either responsive or insensitive to immune checkpoint blockade. The central role of macrophages in regulating preexisting immunity is substantiated by depletion experiments, transcriptome analysis of ex vivo sorted TAMs, and gene expression profiling of whole tumor lysates at an early treatment time point. This approach enabled the identification of specific combination-induced changes among the pleiotropic activation spectrum of the CD40 agonist. In patients, CD40 expression on human TAMs was detected in mesothelioma and colorectal adenocarcinoma.


Assuntos
Imunidade , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Antígenos CD40/agonistas , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Inflamação/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenótipo , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
20.
J Leukoc Biol ; 103(3): 545-558, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29345363

RESUMO

Tumor-associated Mφs display a plastic phenotype that is regulated by the local tumor milieu. Gene expression analysis and functional characterization of Mφs exposed in vitro to individual cytokines aids to delineate the cross-talk between defined cytokines shaping the complex Mφ phenotype. Human monocyte-derived Mφs can be differentiated in vitro with the T helper cell type 2 response cytokines IL-4 and IL-13 or the immunosuppressive IL-10. Notably, only the latter subset undergoes apoptosis when treated with the CSF 1 receptor (CSF1R) blocking antibody emactuzumab. However, under physiologic conditions, the Mφ phenotype is regulated by cytokine combination. Hence, in this study, we characterized the plasticity of IL-4 or IL-13-differentiated Mφs upon exposure to the immunosuppressive IL-10. Although IL-4-differentiated Mφs sustained their molecular phenotype in the presence of IL-10, IL-13-differentiated Mφs were skewed towards the IL-10 phenotype. Gene expression profiling revealed unique IL-4+IL-10 and IL-13+IL-10 Mφ signatures associated with up-regulation of canonical NF-κB or Wnt/ß-catenin signaling pathways, respectively. Although IL-10 was able to alter the surface marker and gene expression profile of IL-13-differentiated Mφs, addition of IL-10 did not restore emactuzumab susceptibility. Combining NF-κB and Wnt/ß-catenin signaling inhibitors with emactuzumab had no effect on viability. On average 3-5% of cancer patients overexpressed IL-4, IL-13, or IL-10 mRNA in silico. Although a small patient subset overexpressed IL-10+IL-13, IL-4+IL-10 lacked co-expression. In vitro characterization of CSF1R inhibitor-refractory Mφ phenotypes can support novel pharmacological approaches to specifically target these cells.


Assuntos
Anticorpos Monoclonais/farmacologia , Citocinas/farmacologia , Interleucina-10/farmacologia , Macrófagos/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Células Th2/metabolismo , Anticorpos Monoclonais Humanizados , Células Cultivadas , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...