Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111750

RESUMO

Continuous manufacturing is becoming the new technological standard in the pharmaceutical industry. In this work, a twin-screw processor was employed for the continuous production of liquisolid tablets containing either simethicone or a combination of simethicone with loperamide hydrochloride. Both active ingredients present major technological challenges, as simethicone is a liquid, oily substance, and loperamide hydrochloride was used in a very small amount (0.27% w/w). Despite these difficulties, the use of porous tribasic calcium phosphate as a carrier and the adjustment of the settings of the twin-screw processor enabled the optimization of the characteristics of the liquid-loaded powders and made it possible to efficiently produce liquisolid tablets with advantages in physical and functional properties. The application of chemical imaging by means of Raman spectroscopy allowed for the visualization of differences in the distribution of individual components of the formulations. This proved to be a very effective tool for identifying the optimum technology to produce a drug product.

2.
Discov Nano ; 18(1): 27, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856901

RESUMO

The influence of self-assembled short-period superlattices (SPSLs) on the structural and optical properties of InGaN/GaN nanowires (NWs) grown by PAMBE on Si (111) was investigated by STEM, EDXS, µ-PL analysis and k·p simulations. STEM analysis on single NWs indicates that in most of the studied nanostructures, SPSLs self-assemble during growth. The SPSLs display short-range ordering of In-rich and In-poor InxGa1-xN regions with a period of 2-3 nm that are covered by a GaN shell and that transition to a more homogenous InxGa1-xN core. Polarization- and temperature-resolved PL analysis performed on the same NWs shows that they exhibit a strong parallel polarized red-yellow emission and a predominantly perpendicular polarized blue emission, which are ascribed to different In-rich regions in the nanostructures. The correlation between STEM, µ-PL and k·p simulations provides better understanding of the rich optical emission of complex III-N nanostructures and how they are impacted by structural properties, yielding the significant impact of strain on self-assembly and spectral emission.

3.
Nanoscale ; 15(15): 7077-7085, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36987591

RESUMO

The luminescence of InxGa1-xN nanowires (NWs) is frequently reported with large red-shifts as compared to the theoretical value expected from the average In content. Both compositional fluctuations and radial built-in fields were considered accountable for this effect, depending on the size, structure, composition, and surrounding medium of the NWs. In the present work, the emission properties of InGaN/GaN NWs grown by plasma-assisted molecular beam epitaxy are investigated in a comprehensive study combining ultraviolet-Raman and photoluminescence spectroscopy (PL) on vertical arrays, polarization-dependent PL on bundles of a few NWs, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and calculations of the band profiles. The roles of inhomogeneous In distribution and radial fields in the context of optical emission properties are addressed. The radial built-in fields are found to be modest, with a maximum surface band bending below 350 meV. On the other hand, variations in the local In content have been observed that give rise to potential fluctuations whose impact on the emission properties is shown to prevail over band-bending effects. Two luminescence bands with large positive and moderate negative polarization ratios of ≈+80% and ≤-60%, respectively, were observed. The red-shift in the luminescence is associated with In-rich inclusions in the NWs due to thermodynamic decomposition during growth. The negative polarization anisotropy is suggested to result from spontaneously formed superlattices in the In-rich regions of the NWs. The NWs show a preferred orthogonal absorption due to the dielectric boundary conditions and highlight the extreme sensitivity of these structures towards light polarization.

4.
J Chem Theory Comput ; 18(4): 2375-2387, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35229611

RESUMO

Atomistic-to-continuum coupling methods are used to unravel molecular mechanisms of polymers and polymer composites. These multiscale techniques advantageously combine the computational efficiency of continuum approaches while keeping the accuracy of particle-based methods. The Capriccio method [Pfaller et al. Comput. Methods Appl. Mech. Eng. 2013, 260, 109-129.] is a well-proven multiscale technique, which connects finite elements (FE) with molecular dynamics (MD) in a partitioned-domain approach. A vital aspect of these multiscale methods is to provide physically sound boundary conditions to the particle domain suppressing any interface effects at the domain boundary occurring due to the coupling. These interfacial coupling artifacts still pose a significant problem, especially for amorphous polymers due to their highly irregular microstructure. We solve this problem by extending the particle-continuum interface by a layer of passive atoms which move with the outer continuum, thereby providing the missing interactions with a surrounding polymer bulk to the inner particle region. This solution allows us to successfully reproduce structural and mechanical properties obtained under conventional periodic boundary conditions, like density, stress, Young's modulus, and Poisson's ratio. Furthermore, we demonstrate the application of a nonaffine deformation by means of a simple bending test. In general, our revised method provides a framework to apply complex deformations for molecular scientists, while it allows the engineering community to examine challenging phenomena such as fracture behavior at a molecular level.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Módulo de Elasticidade , Polímeros/química
5.
Polymers (Basel) ; 11(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698788

RESUMO

In this contribution, we present a characterization methodology to obtain pseudo experimental deformation data from CG MD simulations of polymers as an inevitable prerequisite to choose and calibrate continuum mechanical constitutive laws. Without restriction of generality, we employ a well established CG model of atactic polystyrene as exemplary model system and simulate its mechanical behavior under various uniaxial tension and compression load cases. To demonstrate the applicability of the obtained data, we exemplarily calibrate a viscoelastic continuum mechanical constitutive law. We conclude our contribution by a thorough discussion of the findings obtained in the numerical pseudo experiments and give an outline of subsequent research activities. Thus, this work contributes to the field of multiscale simulation methods and adds a specific application to the body of knowledge of CG MD simulations.

6.
Sci Rep ; 9(1): 3533, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837625

RESUMO

In vitro co-cultures of different primary human cell types are pivotal for the testing and evaluation of biomaterials under conditions that are closer to the human in vivo situation. Especially co-cultures of macrophages and mesenchymal stem cells (MSCs) are of interest, as they are both present and involved in tissue regeneration and inflammatory reactions and play crucial roles in the immediate inflammatory reactions and the onset of regenerative processes, thus reflecting the decisive early phase of biomaterial contact with the host. A co-culture system of these cell types might thus allow for the assessment of the biocompatibility of biomaterials. The establishment of such a co-culture is challenging due to the different in vitro cell culture conditions. For human macrophages, medium is usually supplemented with human serum (hS), whereas hMSC culture is mostly performed using fetal calf serum (FCS), and these conditions are disadvantageous for the respective other cell type. We demonstrate that human platelet lysate (hPL) can replace hS in macrophage cultivation and appears to be the best option for co-cultivation of human macrophages with hMSCs. In contrast to FCS and hS, hPL maintained the phenotype of both cell types, comparable to that of their respective standard culture serum, as well as the percentage of each cell population. Moreover, the expression profile and phagocytosis activity of macrophages was similar to hS.


Assuntos
Plaquetas/química , Meios de Cultura/química , Soro/química , Animais , Plaquetas/metabolismo , Bovinos , Técnicas de Cocultura , Meios de Cultura/farmacologia , Citocinas/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fagocitose/efeitos dos fármacos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...