Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 85: 102264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925932

RESUMO

The keratin cytoskeleton protects epithelia against mechanical, nonmechanical, and physical stresses, and participates in multiple signaling pathways that regulate cell integrity and resilience. Keratin gene mutations cause multiple rare monoallelic epithelial diseases termed keratinopathies, including the skin diseases Epidermolysis Bullosa Simplex (EBS) and Pachyonychia Congenita (PC), with limited available therapies. The disease-related keratin mutations trigger posttranslational modifications (PTMs) in keratins and their associated proteins that can aggravate the disease. Recent findings of drug high-throughput screening have led to the identification of compounds that may be repurposed, since they are used for other human diseases, to treat keratinopathies. These drugs target unique PTM pathways and sites, including phosphorylation and acetylation of keratins and their associated proteins, and have shed insights into keratin regulation and interactions. They also offer the prospect of testing the use of drug mixtures, with the long view of possible beneficial human use coupled with increased efficacy and lower side effects.


Assuntos
Epidermólise Bolhosa Simples , Queratinas , Humanos , Queratinas/genética , Queratinas/metabolismo , Citoesqueleto/metabolismo , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Mutação , Processamento de Proteína Pós-Traducional
2.
Curr Biol ; 33(19): R1002-R1004, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816316

RESUMO

A new study reports that the extracellular matrix component laminin-111 shields the nucleus from actin-mediated forces by engaging the keratin cytoskeleton. Thus, matrix composition represents a means by which tissues can protect cell nuclei from mechanical damage.


Assuntos
Actinas , Citoesqueleto , Fenômenos Fisiológicos Celulares , Microtúbulos , Biofísica , Núcleo Celular , Matriz Extracelular , Estresse Mecânico
4.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37485877

RESUMO

Keratin (K) and other intermediate filament (IF) protein mutations at conserved arginines disrupt keratin filaments into aggregates and cause human epidermolysis bullosa simplex (EBS; K14-R125C) or predispose to mouse liver injury (K18-R90C). The challenge for more than 70 IF-associated diseases is the lack of clinically utilized IF-targeted therapies. We used high-throughput drug screening to identify compounds that normalized mutation-triggered keratin filament disruption. Parthenolide, a plant sesquiterpene lactone, dramatically reversed keratin filament disruption and protected cells and mice expressing K18-R90C from apoptosis. K18-R90C became hyperacetylated compared with K18-WT and treatment with parthenolide normalized K18 acetylation. Parthenolide upregulated the NAD-dependent SIRT2, and increased SIRT2-keratin association. SIRT2 knockdown or pharmacologic inhibition blocked the parthenolide effect, while site-specific Lys-to-Arg mutation of keratin acetylation sites normalized K18-R90C filaments. Treatment of K18-R90C-expressing cells and mice with nicotinamide mononucleotide had a parthenolide-like protective effect. In 2 human K18 variants that associate with human fatal drug-induced liver injury, parthenolide protected K18-D89H- but not K8-K393R-induced filament disruption and cell death. Importantly, parthenolide normalized K14-R125C-mediated filament disruption in keratinocytes and inhibited dispase-triggered keratinocyte sheet fragmentation and Fas-mediated apoptosis. Therefore, keratin acetylation may provide a novel therapeutic target for some keratin-associated diseases.


Assuntos
Queratinas , Sirtuína 2 , Animais , Humanos , Camundongos , Proteínas de Filamentos Intermediários , Queratinas/genética , Queratinas/metabolismo , Mutação , Sirtuína 2/genética
5.
J Invest Dermatol ; 142(12): 3282-3293, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35691363

RESUMO

Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.


Assuntos
Epidermólise Bolhosa Simples , Humanos , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Queratinas/metabolismo , Estaurosporina/metabolismo , Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Mutação
6.
J Cell Sci ; 133(8)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32122945

RESUMO

Desmosome remodeling is crucial for epidermal regeneration, differentiation and wound healing. It is mediated by adapting the composition, and by post-translational modifications, of constituent proteins. We have previously demonstrated in mouse suprabasal keratinocytes that plakophilin (PKP) 1 mediates strong adhesion, which is negatively regulated by insulin-like growth factor 1 (IGF1) signaling. The importance of PKP3 for epidermal adhesion is incompletely understood. Here, we identify a major role of epidermal growth factor (EGF), but not IGF1, signaling in PKP3 recruitment to the plasma membrane to facilitate desmosome assembly. We find that ribosomal S6 kinases (RSKs) associate with and phosphorylate PKP3, which promotes PKP3 association with desmosomes downstream of the EGF receptor. Knockdown of RSKs as well as mutation of an RSK phosphorylation site in PKP3 interfered with desmosome formation, maturation and adhesion. Our findings implicate a coordinate action of distinct growth factors in the control of adhesive properties of desmosomes through modulation of PKPs in a context-dependent manner.


Assuntos
Desmossomos , Placofilinas , Animais , Adesão Celular , Desmossomos/metabolismo , Camundongos , Fosforilação , Placofilinas/genética , Placofilinas/metabolismo , Proteínas Quinases S6 Ribossômicas
7.
J Cell Sci ; 131(10)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29678907

RESUMO

Desmosomes are essential for strong intercellular adhesion and are abundant in tissues exposed to mechanical strain. At the same time, desmosomes need to be dynamic to allow for remodeling of epithelia during differentiation or wound healing. Phosphorylation of desmosomal plaque proteins appears to be essential for desmosome dynamics. However, the mechanisms of how context-dependent post-translational modifications regulate desmosome formation, dynamics or stability are incompletely understood. Here, we show that growth factor signaling regulates the phosphorylation-dependent association of plakophilins 1 and 3 (PKP1 and PKP3) with 14-3-3 protein isoforms, and uncover unique and partially antagonistic functions of members of the 14-3-3 family in the regulation of desmosomes. 14-3-3γ associated primarily with cytoplasmic PKP1 phosphorylated at S155 and destabilized intercellular cohesion of keratinocytes by reducing its incorporation into desmosomes. In contrast, 14-3-3σ (also known as stratifin, encoded by SFN) interacted preferentially with S285-phosphorylated PKP3 to promote its accumulation at tricellular contact sites, leading to stable desmosomes. Taken together, our study identifies a new layer of regulation of intercellular adhesion by 14-3-3 proteins.


Assuntos
Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/metabolismo , Desmossomos/metabolismo , Exorribonucleases/metabolismo , Placofilinas/metabolismo , Proteínas 14-3-3/genética , Biomarcadores Tumorais/genética , Adesão Celular , Citoplasma/metabolismo , Desmossomos/genética , Exorribonucleases/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Placofilinas/genética
8.
J Invest Dermatol ; 136(10): 2022-2029, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27375112

RESUMO

Desmosomes are cell-cell adhesive structures essential for tissue integrity of the epidermis and the heart. Their constituents belong to multigene families giving rise to desmosomes of variable composition. So far, the functional significance of context-dependent composition in desmosome formation, dynamics, or stability during epidermal differentiation is incompletely understood. In this comparative study, we have uncovered unique and partially antagonistic functions of plakophilins 1 and 3 that are both expressed in the murine epidermis. These plakophilins differ in their localization patterns and kinetics during de novo desmosome formation and are regulated by distinct mechanisms. Moreover, plakophilin 3-containing desmosomes are more dynamic than desmosomes that contain predominantly plakophilin 1. Further, we show that Ca(2+)-independence of desmosomes strictly depends on plakophilin 1, whereas elevated levels of plakophilin 3 prevent the formation of hyperadhesive desmosomes in a protein kinase C alpha-dependent manner, even in the presence of plakophilin 1. Our study demonstrates that the balance between plakophilins 1 and 3 determines the context-dependent properties of epidermal desmosomes. In this setting, plakophilin 1 provides stable intercellular cohesion that resists mechanical stress, whereas plakophilin 3 confers dynamics as required during tissue homeostasis and repair. Our data have implications for the role of plakophilins in carcinogenesis.


Assuntos
Cálcio/metabolismo , Adesão Celular/fisiologia , Desmossomos/metabolismo , Placofilinas/metabolismo , Animais , Linhagem Celular , Células Epidérmicas , Humanos , Camundongos , Camundongos Knockout , Proteína Quinase C-alfa/metabolismo
9.
J Invest Dermatol ; 136(7): 1471-1478, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27033150

RESUMO

Desmosomes mediate strong intercellular adhesion through desmosomal cadherins that interact with intracellular linker proteins including plakophilins (PKPs) 1-3 to anchor the intermediate filaments. PKPs show overlapping but distinct expression patterns in the epidermis. So far, the contribution of individual PKPs in differentially regulating desmosome function is incompletely understood. To resolve the role of PKP1 we ablated the PKP1 gene. Here, we report that PKP1(-/-) mice were born at the expected mendelian ratio with reduced birth weight, but they otherwise appeared normal immediately after birth. However, their condition rapidly declined, and the mice died within 24 hours, developing fragile skin with lesions in the absence of obvious mechanical trauma. This was accompanied by sparse and small desmosomes. Newborn PKP1(-/-) mice showed disturbed tight junctions with an impaired inside-out barrier, whereas the outside-in barrier was unaffected. Keratinocytes isolated from these mice showed strongly reduced intercellular cohesion, delayed tight junction formation, and reduced transepithelial resistance and reduced proliferation rates. Our study shows a nonredundant and essential role of PKP1 in desmosome and tight junction function and supports a role of PKP1 in growth control, a function that is crucial in wound healing and epidermal carcinogenesis.


Assuntos
Desmossomos/metabolismo , Epiderme/patologia , Placofilinas/fisiologia , Junções Íntimas/metabolismo , Animais , Animais Recém-Nascidos , Carcinogênese , Adesão Celular , Proliferação de Células , Epiderme/metabolismo , Camundongos , Camundongos Knockout , Placofilinas/genética , Pele/metabolismo , Pele/patologia , Cicatrização
10.
J Cell Sci ; 126(Pt 8): 1832-44, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23444369

RESUMO

Downregulation of adherens junction proteins is a frequent event in carcinogenesis. How desmosomal proteins contribute to tumor formation by regulating the balance between adhesion and proliferation is not well understood. The desmosomal protein plakophilin 1 can increase intercellular adhesion by recruiting desmosomal proteins to the plasma membrane or stimulate proliferation by enhancing translation rates. Here, we show that these dual functions of plakophilin 1 are regulated by growth factor signaling. Insulin stimulation induced the phosphorylation of plakophilin 1, which correlated with reduced intercellular adhesion and an increased activity of plakophilin 1 in the stimulation of translation. Phosphorylation was mediated by Akt2 at four motifs within the plakophilin 1 N-terminal domain. A plakophilin 1 phospho-mimetic mutant revealed reduced intercellular adhesion and accumulated in the cytoplasm, where it increased translation and proliferation rates and conferred the capacity of anchorage-independent growth. The cytoplasmic accumulation was mediated by the stabilization of phosphorylated plakophilin 1, which displayed a considerably increased half-life, whereas non-phosphorylated plakophilin 1 was more rapidly degraded. Our data indicate that upon activation of growth factor signaling, plakophilin 1 switches from a desmosome-associated growth-inhibiting to a cytoplasmic proliferation-promoting function. This supports the view that the deregulation of plakophilin 1, as observed in several tumors, directly contributes to hyperproliferation and carcinogenesis in a context-dependent manner.


Assuntos
Adesão Celular/fisiologia , Placofilinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adesão Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células HeLa , Humanos , Imunoprecipitação , Insulina/metabolismo , Espectrometria de Massas , Fosforilação , Placofilinas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...