Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612927

RESUMO

Drug efflux transporters of the ATP-binding-cassette superfamily play a major role in the availability and concentration of drugs at their site of action. ABCC2 (MRP2) and ABCG2 (BCRP) are among the most important drug transporters that determine the pharmacokinetics of many drugs and whose overexpression is associated with cancer chemoresistance. ABCC2 and ABCG2 expression is frequently altered during treatment, thus influencing efficacy and toxicity. Currently, there are no routine approaches available to closely monitor transporter expression. Here, we developed and validated a UPLC-MS/MS method to quantify ABCC2 and ABCG2 in extracellular vesicles (EVs) from cell culture and plasma. In this way, an association between ABCC2 protein levels and transporter activity in HepG2 cells treated with rifampicin and hypericin and their derived EVs was observed. Although ABCG2 was detected in MCF7 cell-derived EVs, the transporter levels in the vesicles did not reflect the expression in the cells. An analysis of plasma EVs from healthy volunteers confirmed, for the first time at the protein level, the presence of both transporters in more than half of the samples. Our findings support the potential of analyzing ABC transporters, and especially ABCC2, in EVs to estimate the transporter expression in HepG2 cells.


Assuntos
Vesículas Extracelulares , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Cromatografia Líquida , Proteínas de Neoplasias/genética , Espectrometria de Massas em Tandem , Proteínas de Membrana Transportadoras
2.
Life (Basel) ; 13(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37629489

RESUMO

Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell-cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes. In this article, we review the scientific evidence addressing the regulation of ABC transporters by EV-mediated cell-cell communication. MDR transfer from drug-resistant to drug-sensitive cells has been identified in several tumor entities. This was attributed, in some cases, to the direct shuttle of transporter molecules or its coding mRNA between cells. Also, EV-mediated transport of regulatory proteins (e.g., transcription factors) and noncoding RNAs have been indicated to induce MDR. Conversely, the transfer of a drug-sensitive phenotype via EVs has also been reported. Additionally, interactions between non-tumor cells and the tumor cells with an impact on MDR are presented. Finally, we highlight uninvestigated aspects and possible approaches to exploiting this knowledge toward the identification of druggable processes and molecules and, ultimately, the development of novel therapeutic strategies.

3.
Life (Basel) ; 13(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37629602

RESUMO

Drug-metabolizing enzymes (DMEs) and transporters play a major role in drug efficacy and safety. They are regulated at multiple levels and by multiple factors. Estimating their expression and activity could contribute to predicting drug pharmacokinetics and their regulation by drugs or pathophysiological situations. Determining the expression of these proteins in the liver, intestine, and kidney requires the collection of biopsy specimens. Instead, the isolation of extracellular vesicles (EVs), which are nanovesicles released by most cells and present in biological fluids, could deliver this information in a less invasive way. In this article, we review the use of EVs as surrogates for the expression and activity of DMEs, uptake, and efflux transporters. Preliminary evidence has been provided for a correlation between the expression of some enzymes and transporters in EVs and the tissue of origin. In some cases, data obtained in EVs reflect the induction of phase I-DMEs in the tissues. Further studies are required to elucidate to what extent the regulation of other DMEs and transporters in the tissues reflects in the EV cargo. If an association between tissues and their EVs is firmly established, EVs may represent a significant advancement toward precision therapy based on the biotransformation and excretion capacity of each individual.

4.
Cells ; 10(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34831358

RESUMO

The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.


Assuntos
Proteínas Correpressoras/metabolismo , Receptor de Pregnano X/metabolismo , Animais , Doença , Saúde , Humanos , Ligantes , Ligação Proteica , Transcrição Gênica
5.
Life Sci ; 287: 119936, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34506838

RESUMO

AIM: P-glycoprotein (P-gp) plays a critical role in the excretion of xenobiotics into bile. Previous studies have demonstrated that prolactin (PRL) regulates biotransformation and bile salt transport. Here we investigate whether the capability of the liver to transport xenobiotics into bile is altered in hyperprolactinemic states studying the modulation of hepatic P-gp by PRL. METHODS: We used lactating post-partum rats (PP), as a model of physiological hyperprolactinemia (15 and 21 days after delivery: PP15 and PP21, respectively), and ovariectomized rats treated with PRL (300 µg/day, 7 days, via osmotic minipumps, OVX + PRL). Hepatic P-gp expression and activity were evaluated by western blotting and using rhodamine 123 as substrate in vivo, respectively. Since P-gp is encoded by Mdr1a and Mdr1b in rodents, we quantified their expression by qPCR in primary hepatocyte cultures exposed to 0.1 µg/ml of PRL after 12 h. To further study the mechanism of hepatic P-gp modulation by PRL, hepatocytes were pretreated with actinomycin D and then exposed to PRL (0.1 µg/ml) for 12 h. KEY FINDINGS: We found increased hepatic P-gp protein expression and activity in PP15 and OVX + PRL. Also, a significant increase in Mdr1a and Mdr1b mRNA levels was observed in primary hepatocyte cultures exposed to PRL, pointing out the hormone direct action. Actinomycin D prevented these increases, confirming a transcriptional up-regulation of P-gp by PRL. SIGNIFICANCE: These findings suggest the possibility of an increased biliary excretion of xenobiotics substrates of P-gp, including therapeutic agents, affecting their pharmaco/toxicokinetics in hyperprolactinemic situations.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Fígado/efeitos dos fármacos , Fígado/metabolismo , Prolactina/metabolismo , Prolactina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Lactação/efeitos dos fármacos , Lactação/metabolismo , Ovariectomia , Ratos , Ratos Wistar , Ovinos
6.
Toxicol Appl Pharmacol ; 426: 115636, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214573

RESUMO

Paraquat (PQ), an herbicide widely used in agriculture, is considered a highly toxic compound. In hepatocytes, P-glycoprotein (P-gp/Abcb1) is a canalicular transporter involved in PQ extrusion from the cell. Previously, we demonstrated that genistein (GNT) induces P-gp in rat liver. In this study, the protective role of GNT pretreatment towards hepatic damage in a model of acute intoxication with PQ in rats, was investigated. Wistar rats were randomized in 4 groups: Control, GNT (5 mg/kg/day sc, 4 days), PQ (50 mg/kg/day ip, last day) and GNT+ PQ. Hepatic lipoperoxidation (LPO) was evaluated by the thiobarbituric acid reactive substances method. Hepatic levels of 4-hydroxynonenal protein adducts (4-HNEp-add) and glutathione-S-transferase alpha (GSTα) protein expression were evaluated by Western blotting. Hepatic glutathione levels and plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Biliary excretion of PQ was studied in vivo and in isolated perfused liver. PQ was quantified by HPLC. PQ significantly increased AST and ALT activities, malondialdehyde and 4-HNEp-add levels, whereby pretreatment with GNT ameliorated this effect. PQ biliary excretion remained unchanged after treatments in both experimental models. Hepatic GSTα expression was augmented in GNT group. GNT pretreatment increased hepatic glutathione levels in PQ + GNT group. These results agree with the lower content of 4-HNEp-adds in GNT + PQ group respect to PQ group. Unexpectedly, increased activity of P-gp did not enhance PQ biliary excretion. Thus, GNT protective mechanism is likely through the induction of GSTα which results in increased 4-HNE metabolism before formation of protein adducts.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Genisteína/uso terapêutico , Substâncias Protetoras/uso terapêutico , Alanina Transaminase/sangue , Aldeídos/metabolismo , Animais , Aspartato Aminotransferases/sangue , Bile/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Genisteína/farmacologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Herbicidas , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Paraquat , Substâncias Protetoras/farmacologia , Ratos Wistar
7.
J Am Soc Nephrol ; 32(5): 1210-1226, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33782168

RESUMO

BACKGROUND: Urinary extracellular vesicles (uEVs) are a promising source for biomarker discovery, but optimal approaches for normalization, quantification, and characterization in spot urines are unclear. METHODS: Urine samples were analyzed in a water-loading study, from healthy subjects and patients with kidney disease. Urine particles were quantified in whole urine using nanoparticle tracking analysis (NTA), time-resolved fluorescence immunoassay (TR-FIA), and EVQuant, a novel method quantifying particles via gel immobilization. RESULTS: Urine particle and creatinine concentrations were highly correlated in the water-loading study (R2 0.96) and in random spot urines from healthy subjects (R2 0.47-0.95) and patients (R2 0.41-0.81). Water loading reduced aquaporin-2 but increased Tamm-Horsfall protein (THP) and particle detection by NTA. This finding was attributed to hypotonicity increasing uEV size (more EVs reach the NTA size detection limit) and reducing THP polymerization. Adding THP to urine also significantly increased particle count by NTA. In both fluorescence NTA and EVQuant, adding 0.01% SDS maintained uEV integrity and increased aquaporin-2 detection. Comparison of intracellular- and extracellular-epitope antibodies suggested the presence of reverse topology uEVs. The exosome markers CD9 and CD63 colocalized and immunoprecipitated selectively with distal nephron markers. Conclusions uEV concentration is highly correlated with urine creatinine, potentially replacing the need for uEV quantification to normalize spot urines. Additional findings relevant for future uEV studies in whole urine include the interference of THP with NTA, excretion of larger uEVs in dilute urine, the ability to use detergent to increase intracellular-epitope recognition in uEVs, and CD9 or CD63 capture of nephron segment-specific EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Nefropatias/diagnóstico , Nefropatias/urina , Adulto , Biomarcadores/urina , Estudos de Casos e Controles , Creatinina/urina , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Urinálise
8.
Endocrinology ; 162(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33580265

RESUMO

CONTEXT: Primary aldosteronism (PA) represents 6% to 10% of all essential hypertension patients and is diagnosed using the aldosterone-to-renin ratio (ARR) and confirmatory studies. The complexity of PA diagnosis encourages the identification of novel PA biomarkers. Urinary extracellular vesicles (uEVs) are a potential source of biomarkers, considering that their cargo reflects the content of the parent cell. OBJECTIVE: We aimed to evaluate the proteome of uEVs from PA patients and identify potential biomarker candidates for PA. METHODS: Second morning spot urine was collected from healthy controls (n = 8) and PA patients (n = 7). The uEVs were isolated by ultracentrifugation and characterized. Proteomic analysis on uEVs was performed using LC-MS Orbitrap. RESULTS: Isolated uEVs carried extracellular vesicle markers, showed a round shape and sizes between 50 and 150 nm. The concentration of uEVs showed a direct correlation with urinary creatinine (r = 0.6357; P = 0.0128). The uEV size mean (167 ±â€…6 vs 183 ±â€…4nm) and mode (137 ±â€…7 vs 171 ±â€…11nm) was significantly smaller in PA patients than in control subjects, but similar in concentration. Proteomic analysis of uEVs from PA patients identified an upregulation of alpha-1-acid glycoprotein 1 (AGP1) in PA uEVs, which was confirmed using immunoblot. A receiver operating characteristic curve analysis showed an area under the curve of 0.92 (0.82 to 1; P = 0.0055). CONCLUSION: Proteomic and further immunoblot analyses of uEVs highlights AGP1 as potential biomarker for PA.


Assuntos
Vesículas Extracelulares/química , Hiperaldosteronismo/urina , Orosomucoide/urina , Adulto , Idoso , Biomarcadores/urina , Creatinina/urina , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/genética , Masculino , Pessoa de Meia-Idade , Orosomucoide/genética , Proteômica , Adulto Jovem
9.
Pharmacol Res ; 163: 105251, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065282

RESUMO

The extensive intestinal surface offers an advantage regarding nutrient, ion and water absorptive capacity but also brings along a high exposition to xenobiotics, including drugs of therapeutic use and food contaminants. After absorption of these compounds by the enterocytes, apical ABC transporters play a key role in secreting them back to the intestinal lumen, hence acting as a transcellular barrier. Rapid and reversible modulation of their activity is a subject of increasing interest for pharmacologists. On the one hand, a decrease in transporter activity may result in increased absorption of therapeutic agents given orally. On the other hand, an increase in transporter activity would decrease their absorption and therapeutic efficacy. Although of less relevance, apical ABC transporters also contribute to disposition of drugs systemically administered. This review article summarizes the present knowledge on the mechanisms aimed to rapidly regulate the activity of the main apical ABC transporters of the gut: multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). Regulation of these mechanisms by drugs, drug delivery systems, drug excipients and nutritional components are particularly considered. This information could provide the basis for controlled regulation of bioavailability of therapeutic agents and at the same time would help to prevent potential drug-drug interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trato Gastrointestinal/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Disponibilidade Biológica , Humanos
10.
Pharmaceutics ; 12(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105857

RESUMO

Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell types. Recently, an enormous number of studies have been published on the potential of EVs as carriers of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity and higher engineering potential. Here, we review the most relevant publications addressing the potential and use of EVs as a drug delivery system (DDS). The information is divided based on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources and isolation methods of EVs. We address the administration routes that have been tested in vivo and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is performed. Although the application of EVs in the clinical practice is still at an early stage, a high number of studies in animals support their potential as DDS. Thus, better treatment options could be designed to precisely increase target specificity and therapeutic efficacy while reducing off-target effects and toxicity according to the individual requirements of each patient.

11.
Front Cell Dev Biol ; 8: 244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351960

RESUMO

Extracellular vesicles (EV) are nanosized particles released by a large variety of cells. They carry molecules such as proteins, RNA and lipids. While urinary EVs have been longer studied as a source of biomarkers for renal and non-renal disorders, research on EVs as regulatory players of renal physiological and pathological processes has experienced an outbreak recently in the past decade. In general, the microenvironment and (patho)physiological state of the donor cells affect the cargo of the EVs released, which then determines the effect of these EVs once they reach a target cell. For instance, EVs released by renal epithelial cells modulate the expression and function of water and solute transporting proteins in other cells. Also, EVs have been demonstrated to regulate renal organogenesis and blood flow. Furthermore, a dual role of EVs promoting, but also counteracting, disease has also been reported. EVs released by renal tubular cells can reach fibroblasts, monocytes, macrophages, T cells and natural killer cells, thus influencing the pathogenesis and progression of renal disorders like acute kidney injury and fibrosis, nephrolithiasis, renal transplant rejection and renal cancer, among others. On the contrary, EVs may also exert a cytoprotective role upon renal damage and promote recovery of renal function. In the current review, a systematic summary of the key studies from the past 5 years addressing the role of EVs in the modulation of renal physiological and pathophysiological processes is provided, highlighting open questions and discussing the potential of future research.

12.
J Recept Signal Transduct Res ; 39(5-6): 451-459, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31771390

RESUMO

MicroRNAs are short noncoding RNAs of about 19-25 nucleotides that usually target the 3' untranslated regions of mRNAs thus mediating post-transcriptional regulation of gene expression. Previous data indicate a role for miR-148a in the regulation of the pregnane X receptor (PXR/NR1I2), a nuclear receptor that regulates the expression of drug transporters like P-glycoprotein (P-gp/ABCB1). Our study investigated the effect of miR-148a on the post-transcriptional regulation of PXR and its target gene ABCB1 in oropharyngeal cancer cell lines (OPSCC). miR-148a was over-expressed and knocked-down in three OPSCC cell lines (HNO41, HNO206, and HNO413) by transfection with miR-148a mimic and miR-148a antagomir, respectively. Expression of miR-148a, NR1I2, and ABCB1 mRNA was quantified via real-time qPCR, protein expression of PXR was assessed by immunoblotting. Transfection of miR-148a mimic led to increased miR-148a levels in all cell lines and transfection of miR-148a antagomir reduced miR-148a expression in HNO206 and HNO413. Whereas these changes had no significant effect on PXR mRNA expression, protein expression was reduced in HNO41 by transfection with miR-148a and increased in HNO413 by transfection with miR-148a antagomir. Transfection of miR-148a downregulated ABCB1 mRNA in all cell lines, whereas antagonizing miR-148a had no significant effect. Our data demonstrate a modulation of PXR/NR1I2 and ABCB1 expression in OPSCC by miR-148a, however the effect was not uniform in all cell lines and depended on the range of expression of miR-148 and the genotype of rs1054190 SNP in NR1I2 3'UTR. Thus, our findings argue against an unequivocal association between miR-148a and PXR levels in OPSCC.


Assuntos
MicroRNAs/genética , Neoplasias Orofaríngeas/genética , Receptor de Pregnano X/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antagomirs/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Genótipo , Humanos , MicroRNAs/antagonistas & inibidores , Neoplasias Orofaríngeas/patologia , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , Transfecção
13.
Eur J Nutr ; 58(1): 139-150, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29101532

RESUMO

PURPOSE: The soy isoflavone genistein has been described to up-regulate breast cancer resistance protein (BCRP) and, thus, enhance chemoresistance in breast cancer cells. The aim of this work was to assess the effect of long- and short-term incubation with daidzein, the second most abundant soy isoflavone and its metabolite equol on the expression and activity of P-glycoprotein, multidrug resistance-associated proteins 1 and 2 (MRP1 and MRP2) and BCRP in breast cancer cells. METHODS: MCF-7 and MDA-MB-231 cells were treated with phytoestrogen concentrations within the range achieved in individuals with a high isoflavone intake. Transporter expression was evaluated at protein and mRNA level through western blot and qRT-PCR, respectively. Transporter activity was determined using doxorubicin, mitoxantrone and carboxy-dichlorofluorescein as substrates. RESULTS: Daidzein (5 µM) up-regulated MRP2- and down-regulated MRP1 protein expressions in MCF-7 and MDA-MB-231 cells, respectively. Both effects were ER-dependent, as determined using the antagonist ICI 182,780. The decrease in MRP1 mRNA in MDA-MB-231 cells indicates a transcriptional mechanism. On the contrary, MRP2 induction in MCF-7 cells takes place post-transcriptionally. Whereas changes in the transporter expression had a minor effect on the transporter activity, acute incubation with daidzein, R-equol and S-equol led to a strong inhibition of BCRP activity and an increase in the IC50 of BCRP substrates. CONCLUSIONS: In contrast to previous reports for genistein, daidzein and equol do not provoke a major up-regulation of the transporter expression but instead an inhibition of BCRP activity and sensitization to BCRP substrates.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Equol/farmacologia , Isoflavonas/farmacologia , Proteínas de Neoplasias/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Western Blotting , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Equol/metabolismo , Humanos , Isoflavonas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fitoestrógenos/metabolismo , Fitoestrógenos/farmacologia , Reação em Cadeia da Polimerase , Regulação para Cima/efeitos dos fármacos
14.
Curr Med Chem ; 26(7): 1224-1250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29303075

RESUMO

For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Colorretais/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla
15.
Curr Med Chem ; 26(7): 1079-1112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28933287

RESUMO

ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Humanos
16.
Eur J Pharm Sci ; 122: 205-213, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29981893

RESUMO

Multidrug resistance-associated protein 2 (MRP2) plays a key role in hepatic and intestinal disposition of endo- and xenobiotics. Several therapeutic agents modulate MRP2 activity resulting in pharmacological interactions. Nomegestrol acetate (NMGA) is a progestogen increasingly used in contraceptive formulations. The aim of this work was to evaluate the effect of NMGA on MRP2 activity in HepG2 and Caco-2 cells as models of human hepatocytes and enterocytes, respectively. NMGA (5, 50 and 500 nM; 48 h) decreased MRP2-mediated transport of 2,4-dinitrophenyl-S-glutathione in HepG2 cells, with no effect on MRP2 protein expression. Acute exposure (1 h) to the same concentrations of NMGA failed to affect MRP2 activity, ruling out an inhibitory action directly induced by the drug. In contrast, acute incubation with a lysate of HepG2 cells pre-treated with NMGA, containing potential metabolites, reproduced MRP2 inhibition. Preincubation of lysates with sulfatase but not with ß-glucuronidase abolished the inhibitory action, strongly suggesting participation of NMGA sulfated derivatives. Western blot studies in plasma vs. intracellular membrane fractions ruled out internalization of MRP2 to be responsible for the impairment of transport activity. MRP2-mediated transport of 5(6)-carboxy-2',7'-dichlorofluorescein was not affected in Caco-2 cells incubated for 48 h with either 5, 50 or 500 nM NMGA. Conversely, acute exposure (1 h) of Caco-2 cells to NMGA-treated HepG2 lysates decreased MRP2 activity, being this effect also prevented by pre-treatment of the lysates with sulfatase. Taken together, these findings demonstrate an inhibitory effect of NMGA sulfated metabolites on hepatic and intestinal MRP2 function. Extrapolated to the in vivo situation, they suggest the possibility of pharmacological interactions with coadministered drugs.


Assuntos
Anticoncepcionais/farmacologia , Megestrol/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Norpregnadienos/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
17.
Cancer Lett ; 428: 69-76, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715486

RESUMO

Oropharyngeal cancer incidence increased dramatically in the last decades, being infection with human papillomaviruses (HPV) a determinant of this trend. Concerning etiology, treatment response and prognosis, HPV+ and HPV- oropharyngeal cancers constitute different disease entities. The underlying molecular background is not completely understood. ATP-binding cassette (ABC) transporters mediate the efflux of anticancer drugs and are regulated by changes in the intracellular milieu. Furthermore, a role in cancer pathogenesis besides drug transport was reported. We evaluated the effect of transfection with E6 and E7 oncogenes from HPV16 and HPV18 on ABC transporters in oropharyngeal cancer cells. HPV18E6/E7 up-regulated P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and MRP2 expression in HNO206 cells and breast cancer resistance protein (BCRP) in HNO206 and HNO413 cells. While P-gp was regulated translationally, MRP1, MRP2 and BCRP up-regulation resulted from mRNA stabilization. For MRP1 and MRP2, the nonsense-mediated decay pathway was involved. In general, resistance to substrates of up-regulated transporters was increased. Transfection with oncogenes individually indicated a major role of HPV18E7. Our findings suggest ABC transporters as molecular players leading to differences in the pathogenesis of HPV+ and HPV- oropharyngeal cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma de Células Escamosas/patologia , Papillomavirus Humano 18/patogenicidade , Neoplasias Orofaríngeas/patologia , Infecções por Papillomavirus/patologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 18/isolamento & purificação , Papillomavirus Humano 18/metabolismo , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Oncogênicas Virais/metabolismo , Neoplasias Orofaríngeas/tratamento farmacológico , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , RNA Mensageiro/metabolismo , Regulação para Cima
18.
Biochem Pharmacol ; 154: 118-126, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29684377

RESUMO

ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA-mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α. Moreover, we found that the activation of this receptor by NMGA led to a falling-rising profile in intracellular cAMP levels and protein kinase A activity over time, ultimately leading to transcriptional P-gp up-regulation. Finally, we identified inhibitory G protein and phosphodiesterases as mediators of this novel biphasic modulation. These results demonstrate the ability of NMGA to selectively up-regulate hepatic P-gp expression and activity and constitute the first report of ABC transporter modulation by membrane progesterone receptor α. If a similar regulation took place in vivo, decreased bioavailability and therapeutic efficacy of NMGA-coadministered P-gp substrates could be expected. This holds special importance considering long-term administration of NMGA and broad substrate specificity of P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Anticoncepcionais/farmacologia , AMP Cíclico/metabolismo , Hepatócitos/metabolismo , Megestrol/farmacologia , Norpregnadienos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/agonistas , AMP Cíclico/antagonistas & inibidores , Relação Dose-Resposta a Droga , Expressão Gênica , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos
19.
PLoS One ; 13(2): e0193242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29470550

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer worldwide. The pregnane X receptor (PXR) is a nuclear receptor regulating several target genes associated with cancer malignancy. We here demonstrated a significant effect of PXR on HNSCC cell growth, as evidenced in PXR knock-down experiments. PXR transcriptional activity is more importantly regulated by the presence of coactivators and corepressors than by PXR protein expression. To date, there is scarce information on the regulation of PXR in HNSCC and on its role in the pathogenesis of this disease. Coactivator and corepressor expression was screened through qRT-PCR in 8 HNSCC cell lines and correlated to PXR activity, determined by using a reporter gene assay. All cell lines considerably expressed all the cofactors assessed. PXR activity negatively correlated with nuclear receptor corepressor 2 (NCoR2) expression, indicating a major role of this corepressor in PXR modulation and suggesting its potential as a surrogate for PXR activity in HNSCC. To test the association of NCoR2 with the malignant phenotype, a subset of three cell lines was transfected with an over-expression plasmid for this corepressor. Subsequently, cell growth and chemoresistance assays were performed. To elucidate the mechanisms underlying NCoR2 effects on cell growth, caspase 3/7 activity and protein levels of cleaved caspase 3 and PARP were evaluated. In HNO97 cells, NCoR2 over-expression decreased cell growth, chemoresistance and increased cleaved caspase 3 levels, caspase activity and cleaved PARP levels. On the contrary, in HNO124 and HNO210 cells, NCoR2 over-expression increased cell growth, drug resistance and decreased cleaved caspase 3 levels, caspase activity and cleaved PARP levels. In conclusion, we demonstrated a role of PXR and NCoR2 in the modulation of cell growth in HNSCC. This may contribute to a better understanding of the highly variable HNSCC therapeutic response.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Neoplasias/biossíntese , Correpressor 2 de Receptor Nuclear/biossíntese , Receptores de Esteroides/biossíntese , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteínas de Neoplasias/genética , Correpressor 2 de Receptor Nuclear/genética , Receptor de Pregnano X , Receptores de Esteroides/genética
20.
Arch Toxicol ; 92(2): 777-788, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29052767

RESUMO

Multidrug resistance-associated protein 2 (MRP2) is an ATP-dependent transporter expressed at the brush border membrane of the enterocyte that confers protection against absorption of toxicants from foods or bile. Acute, short-term regulation of intestinal MRP2 activity involving changes in its apical membrane localization was poorly explored. We evaluated the effects of dibutyryl-cAMP (db-cAMP), a permeable analog of cAMP, and estradiol-17ß-D-glucuronide (E217G), an endogenous derivative of estradiol, on MRP2 localization and activity using isolated rat intestinal sacs and Caco-2 cells, a model of human intestinal epithelium. Changes in MRP2 localization were studied by Western blotting of plasma membrane (PM) vs. intracellular membrane (IM) fractions in both experimental models, and additionally, by confocal microscopy in Caco-2 cells. After 30 min of exposure, db-cAMP-stimulated sorting of MRP2 from IM to PM both in rat jejunum and Caco-2 cells at 10 and 100 µM concentrations, respectively, with increased excretion of the model substrate 2,4-dinitrophenyl-S-glutathione. In contrast, E217G (400 µM) induced internalization of MRP2 together with impairment of transport activity. Confocal microscopy analysis performed in Caco-2 cells confirmed Western blot results. In the particular case of E217G, MRP2 exhibited an unusual pattern of staining compatible with endocytic vesiculation. Use of selective inhibitors demonstrated the participation of cAMP-dependent protein kinase and classic calcium-dependent protein kinase C in db-cAMP and E217G effects, respectively. We conclude that localization of MRP2 in intestine may be subjected to a dynamic equilibrium between plasma membrane and intracellular domains, thus allowing for rapid regulation of MRP2 function.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bucladesina/farmacologia , Estradiol/análogos & derivados , Mucosa Intestinal/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Células CACO-2 , Membrana Celular/metabolismo , AMP Cíclico , Estradiol/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...