Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489909

RESUMO

The discharge of sanitary sewage into the bays of the Florianópolis Metropolitan Area (Southern Brazil), has led to the contamination of oyster farms. Consequently, linear alkylbenzenes (LABs) were quantified in the sediment, and the biochemical responses in gills and digestive gland of oysters from six farms were assessed. Our findings revealed elevated levels of LABs in the sediment of the Imaruim and Serraria farms. Additionally, alterations were observed in the antioxidant enzymes: catalase, glutathione peroxidase and superoxide dismutase in both oyster tissue from the Serraria, Santo Antonio de Lisboa and Sambaqui farms. Furthermore, correlation analyses indicated strong and moderate associations between biochemical responses, organic contaminants, and certain physicochemical parameters. Consequently, our results demonstrated the activation of the antioxidant system in oysters, representing a protective response to the presence of sanitary sewage and other contaminants. Therefore, we propose the utilization of biochemical biomarkers for monitoring the environmental quality of farms.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Antioxidantes/análise , Esgotos/análise , Poluentes Químicos da Água/análise , Aquicultura , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 678: 585-593, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31078849

RESUMO

Ocean acidification is a result of the decrease in the pH of marine water, caused mainly by the increase in CO2 released in the atmosphere and its consequent dissolution in seawater. These changes can be dramatic for marine organisms especially for oysters Crassostrea gasar if other stressors such as xenobiotics are present. The effect of pH changes (6.5, 7.0 and 8.2) was assessed on the transcript levels of biotransformation [cytochromes P450 (CYP2AU1, CYP2-like2) and glutathione S-transferase (GSTΩ-like)] and antioxidant [superoxide dismutase (SOD-like), catalase (CAT-like) and glutathione peroxidase (GPx-like)] genes, as well as enzyme activities [superoxide dismutase, (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferases transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH)] and lipid peroxidation (MDA) in the gills of Crassostrea gasar exposed to 100 µg·L-1 of phenanthrene (PHE) for 24 and 96 h. Likewise, the PHE burdens was evaluated in whole soft tissues of exposed oysters. The accumulation of PHE in oysters was independent of pH. However, acidification promoted a significant decrease in the transcript levels of some protective genes (24 h exposure: CYP2AU1 and GSTΩ-like; 96 h exposure: CAT-like and GPx-like), which was not observed in the presence of PHE. Activities of GST, CAT and SOD enzymes increased in the oysters exposed to PHE at the control pH (8.2), but at a lower pH values, this activation was suppressed, and no changes were observed in the G6PDH activity and MDA levels. Biotransformation genes showed better responses after 24 h, and antioxidant-coding genes after 96 h, along with the activities of antioxidant enzymes (SOD, CAT), probably because biotransformation of PHE increases the generation of reactive oxygen species. The lack of change in MDA levels suggests that antioxidant modulation efficiently prevented oxidative stress. The effect of pH on the responses to PHE exposure should be taken into account before using these and any other genes as potential molecular biomarkers for PHE exposure.


Assuntos
Crassostrea/fisiologia , Fenantrenos/efeitos adversos , Prótons/efeitos adversos , Água do Mar/química , Poluentes Químicos da Água/efeitos adversos , Animais , Crassostrea/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Distribuição Aleatória , Estresse Fisiológico , Fatores de Tempo
3.
Chemosphere ; 225: 139-149, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30870631

RESUMO

Adverse effects of exposure to persistent organic pollutants (POPs) threaten the maintenance of odontocete populations. In southern Brazil, coastal bottlenose dolphins from the Laguna Estuarine System (LES) and Patos Lagoon Estuary (PLE) were sampled using remote biopsies during the winter and summer months. Levels of bioaccumulated POPs were measured in the blubber. The activities of glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were also quantified, as were the mRNA transcript levels of aryl hydrocarbon receptor (AhR), AhR nuclear translocator (ARNT), cytochrome P450 1A1-like (CYP1A1), metallothionein 2A (MT2A), GST-π, GPx-4, GR, interleukin 1 alpha (IL-1α), and major histocompatibility complex II (MHCII) in the skin. In general, levels of POPs were similar among sites, sexes, ages and seasons. For most animals, total polychlorinated biphenyl (ΣPCBs) levels were above the threshold level have physiological effects and pose risks to cetaceans. The best-fitting generalized linear models (GLMs) found significant associations between GR, IL-1α and GPx-4 transcript levels, SOD and GST activities, and total polybrominated diphenyl ether (ΣPBDEs) and pesticide levels. GLMs and Kruskal-Wallis analyses also indicated that there were higher transcript levels for most genes and lower GST activity in the winter. These results reinforce the need to consider the influence of environmental traits on biomarker values in wildlife assessments.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Golfinho Nariz-de-Garrafa/metabolismo , Monitoramento Ambiental/métodos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Biomarcadores/metabolismo , Biópsia , Brasil , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...