Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 4292-4304, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38885357

RESUMO

The valorization of lignin into advanced materials for water and soil remediation is experiencing a surge in demand. However, it is imperative that material research and manufacturing be sustainable to prevent exacerbating environmental issues. Meeting these requirements necessitates a deeper understanding of the role of lignin's functional groups in attracting targeted species. This research delves into the interaction mechanisms between lignin and organic molecules, using the adsorption of the cationic dye Methylene Blue (MB+) as a case study. Herein, we aim to quantitatively estimate the contribution of different interaction types to the overall adsorption process. While carbonyl groups were found to have no significant role in attraction, carboxylic groups (-COOH) exhibited significantly lower adsorption compared with hydroxyl groups (-OH). Through alternately blocking aliphatic and phenolic -OH groups, we determined that 61% of the adsorption occurred through hydrogen bonding and 38% via electrostatic interactions. Performance studies of modified lignin along with spectroscopic methods (XPS, FTIR) confirmed the negligible role of π-π interactions in adsorption. This study offers fundamental insights into the mechanistic aspects of MB adsorption on lignin, laying the groundwork for potential modifications to enhance the performance of lignin-based adsorbents. The findings underscore the importance of hydroxyl groups and provide a roadmap for future studies examining the influence of steric factors and interactions with other organic molecules.


Assuntos
Lignina , Azul de Metileno , Lignina/química , Azul de Metileno/química , Adsorção , Corantes/química , Ligação de Hidrogênio
2.
Biomacromolecules ; 25(1): 200-212, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38112036

RESUMO

The correlation between lignin structure, its properties, and performance is crucial for lignin engineering in high-value products. Currently, a widespread approach is to compare lignins which differ by more than one parameter (i.e., Kraft vs organosolv vs lignosulfonates) in various applications by attributing the changes in their properties/performance specifically to a certain variable (i.e., phenolic -OH groups). Herein, we suggest a novel approach to overcome this issue by changing only one variable at a time while keeping all others constant before investigating the lignin properties/performance. Indulin AT (Ind-AT), a softwood Kraft lignin, was chosen as the model substrate for this study. Selective (analytical) lignin modifications were used to mask/convert specific functionalities, such as aliphatic (AliphOH) including benzylic -OH (BenzOH) and phenolic -OH (PhOH) groups, carboxyl groups (-COOH) and carbonyl groups (CO) via methylation, acetylation, and reduction. The selectivity and completeness of the reactions were verified by comprehensive NMR analysis (31P and 2D HSQC) of the modified preparations together with state-of-the-art molar mass (MM) characterization. Methylene blue (MB) adsorption, antioxidant activity, and glass transition temperature (Tg) were used to demonstrate and compare the properties/performance of the obtained modified lignins. We found that the contribution of different functionalities in the adsorption of MB follows the trend BenzOH > -COOH > AlipOH > PhOH. Noteworthy, benzylic -OH contributes ca. 3 and 2.3 times more than phenolic and aliphatic -OH, respectively. An 11% and 17% increase of Tg was observed with respect to the unmodified Indulin by methylating benzylic -OH groups and through reduction, respectively, while full acetylation/methylation of aliphatic and phenolic -OH groups resulted in lower Tg. nRSI experiments revealed that phenolic -OH play a crucial role in increasing the antioxidant activity of lignin, while both aliphatic -OH groups and -COOHs possess a detrimental effect, most likely due to H-bonding. Overall, for the first time, we provide here a reliable approach for the engineering of lignin-based products in high value applications by disclosing the role of specific lignin functionalities.


Assuntos
Antioxidantes , Lignina , Lignina/química , Temperatura , Espectroscopia de Ressonância Magnética , Peso Molecular
3.
ChemSusChem ; 16(18): e202300549, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37218461

RESUMO

Our recently reported AquaSolv Omni (AqSO) process shows great potential as a parameter-controlled type of biorefinery, which allows tuning of structure and properties of the products towards their optimal use in high-value applications. Herein, a comprehensive NMR (quantitative 13 C, 31 P, and 2D heteronuclear single-quantum coherence) structural characterization of AqSO lignins is reported. The effect of the process severity (P-factor) and liquid-to-solid ratio (L/S) on the structure of the extracted lignins has been investigated and discussed. Low severity (P-factor in the range 400-600) and L/S=1 led to the isolation of less degraded lignin with a higher ß-O-4 content up to 34/100 Ar. Harsher processing conditions (P-factor=1000-2500) yielded more condensed lignins with a high degree of condensation up to 66 at P-factor=2000. New types of lignin moieties, such as alkyl-aryl and alkyl-alkyl chemical bonds together with novel furan oxygenated structures have been identified and quantified for the first time. In addition, the formation of lignin carbohydrate complexes bonds has been hypothesized at low severity and L/S. Based on the obtained data we were able to formulate a possible outlook of the occurring reactions during the hydrothermal treatment. Overall, such detailed structural information bridges the gap from process engineering to sustainable product development.

4.
Int J Biol Macromol ; 240: 124460, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076061

RESUMO

The rapid exhaustion of fossil fuels brings to the fore the need to search for energy efficient strategies. The conversion of lignin into advanced functional carbon-based materials is considered one of the most promising solutions for environmental protection and the use of renewable resources. This study analyzed the structure-performance correlation of carbon foams (CF) when lignin-phenol-formaldehyde (LPF) resins produced with different fractions of kraft lignin (KL) were employed as carbon source, and polyurethane foam (PU) as sacrificial mold. The lignin fractions employed were KL, fraction of KL insoluble in ethyl acetate (LFIns) and fraction of KL soluble in ethyl acetate (LFSol). The produced CFs were characterized by thermogravimetric analysis (TGA), X-ray diffractometry (XRD), Raman spectroscopy, 2D HSQC Nuclear magnetic resonance (NMR) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and electrochemical measurements. The results showed that when LFSol was employed as a partial substitute for phenol in LPF resin synthesis, the final performance of the produced CF was infinitely higher. The improved solubility parameters of LFSol along with the higher S/G ratio and ß-O-4/α-OH content after fractionation were the key to produce CF with better carbon yields (54 %). The electrochemical measurements showed that LFSol presented the highest current density (2.11 × 10-4 mA.cm-2) and the lowest value of resistance to charge transfer (0.26 KΩ) in relation to the other samples, indicating that the process of electron transfer was faster in the sensor produced with LFSol. LFSol's potential for application as an electrochemical sensor was tested as a proof of concept and demonstrated excellent selectivity for the detection of hydroquinone in water.


Assuntos
Carbono , Lignina , Lignina/química , Fenóis
5.
Chemistry ; 28(40): e202200431, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35385201

RESUMO

The need for greener compounds able to replace conventional ones with similar reactivity is crucial for the development of sustainable chemistry. Isopropenyl esters (iPEs) represent one eco-friendly alternative to acyl halides and anhydrides. This review provides a comprehensive overview of the preparation methodologies and reported synthetic applications of iPEs and, in particular, of isopropenyl acetate (iPAc). Intriguingly, the presence of a C=C double bond adjacent to the ester functionality makes iPEs appealing in different chemoselective organic synthesis transformations. For instance, the acyl moiety is suitable for transesterification reactions in presence of different heteroatom-based nucleophiles (C-, O-, N-, S-, Se-); these reactions are irreversible thanks to the formation of acetone, obtained upon keto-enol tautomerization of the prop-1-en-2-ol (isopropenyl) leaving group. Similarly, the unsaturation contained in the isopropenyl synthon could be selectively exploited in organic synthesis for electrophilic and/or radical additions as well as in metal-catalyzed cross-coupling reactions. To conclude, iPEs recently found major interest in the direct modification of biomass (i.e. lignin or cellulose) and in the implementation of tandem reactions of esterification-acetalization by exploiting the co-formation of acetone during the reaction.


Assuntos
Acetona , Ésteres , Catálise , Técnicas de Química Sintética , Esterificação
6.
ChemSusChem ; 15(11): e202200326, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35312238

RESUMO

Thermosetting polymeric materials have advantageous properties and are therefore used in numerous applications. In this study, it was hypothesized and ultimately shown that thermosets could be derived from comparably sustainable sub-components. A two-step procedure to produce a thermoset comprising of Kraft lignin (KL) and the cross-linker adipic acid (AdA) was developed. The cross-linking was activated by means of an acetylating agent comprising isopropenyl acetate (IPA) to form a cross-linking mixture (CLM). The cross-linking was confirmed by FTIR and solid-state NMR spectroscopy, and the esterification reactions were further studied using model compounds. When the KL lignin was mixed with the CLM, partial esterification occurred to yield a homogeneous viscous liquid that could easily be poured into a mold, as the first step in the procedure. Without any additions, the mold was heated and the material transformed into a thermoset by reaction of the two carboxylic acid-derivatives of AdA and KL in the second step.


Assuntos
Adipatos , Lignina , Temperatura Alta , Lignina/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA