Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 179: 112511, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32931963

RESUMO

Defensins comprise a polyphyletic group of multifunctional defense peptides. Cis-defensins, also known as cysteine stabilized αß (CSαß) defensins, are one of the most ancient defense peptide families. In plants, these peptides have been divided into two classes, according to their precursor organization. Class I defensins are composed of the signal peptide and the mature sequence, while class II defensins have an additional C-terminal prodomain, which is proteolytically cleaved. Class II defensins have been described in Solanaceae and Poaceae species, indicating this class could be spread among all flowering plants. Here, a search by regular expression (RegEx) was applied to the Arabidopsis thaliana proteome, a model plant with more than 300 predicted defensin genes. Two sequences were identified, A7REG2 and A7REG4, which have a typical plant defensin structure and an additional C-terminal prodomain. TraVA database indicated they are expressed in flower, ovules and seeds, and being duplicated genes, this indicates they could be a result of a subfunctionalization process. The presence of class II defensin sequences in Brassicaceae and Solanaceae and evolutionary distance between them suggest class II defensins may be present in other eudicots. Discovery of class II defensins in other plants could shed some light on flower, ovules and seed physiology, as this class is expressed in these locations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Defensinas/genética
2.
Chem Biol Drug Des ; 93(6): 1265-1275, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30865369

RESUMO

Antimicrobial peptides (AMPs) are small molecules present in all living beings. Despite their huge sequence variability, AMPs present great structural conservation, mainly in cysteine-stabilized families. Moreover, in non-model plants, it is possible to detect cysteine-stabilized AMPs (cs-AMPs) with different sequences not covered by conventional searches. Here, we described a threading application for cs-AMP identification in the non-model arum lily (Zantedeschia aethiopica) plant, exploring the spathe transcriptome. By using the predicted proteins from the Z. aethiopica transcriptome as our primary source of sequences, we have filtered by using structural alignments of 12 putative cs-AMP sequences. The two unreported sequences were submitted to PCR validation, and ZaLTP7 gene was confirmed. By using the structure alignments, we classified ZaLTP7 as an LTP type 2-like. The successful threading application for cs-AMP identification is an important advance in transcriptomic and proteomic data mining. Besides, the same approach could be applied to the use of NGS public data to discover molecules to combat multidrug-resistant bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Plantas/química , Transcriptoma , Zantedeschia/genética , Sequência de Aminoácidos , Antibacterianos/química , Sequenciamento de Nucleotídeos em Larga Escala , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...