Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629825

RESUMO

Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Meiose , Plantas/genética , Resposta ao Choque Térmico , Segregação de Cromossomos
2.
3.
Nucleic Acids Res ; 51(21): 11706-11716, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850645

RESUMO

The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.


Assuntos
Reparo do DNA , Autoantígeno Ku , DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Cinética , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo
4.
Plant Direct ; 7(3): e477, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36891158

RESUMO

Meiosis is a specialized cell division that halves the number of chromosomes in two consecutive rounds of chromosome segregation. In angiosperm plants is meiosis followed by mitotic divisions to form rudimentary haploid gametophytes. In Arabidopsis, termination of meiosis and transition to gametophytic development are governed by TDM1 and SMG7 that mediate inhibition of translation. Mutants deficient in this mechanism do not form tetrads but instead undergo multiple cycles of aberrant nuclear divisions that are likely caused by the failure to downregulate cyclin dependent kinases during meiotic exit. A suppressor screen to identify genes that contribute to meiotic exit uncovered a mutation in cyclin-dependent kinase D;3 (CDKD;3) that alleviates meiotic defects in smg7 deficient plants. The CDKD;3 deficiency prevents aberrant meiotic divisions observed in smg7 mutants or delays their onset after initiation of cytokinesis, which permits formation of functional microspores. Although CDKD;3 acts as an activator of cyclin-dependent kinase A;1 (CDKA;1), the main cyclin dependent kinase that regulates meiosis, cdkd;3 mutation appears to promote meiotic exit independently of CDKA;1. Furthermore, analysis of CDKD;3 interactome revealed enrichment for proteins implicated in cytokinesis, suggesting a more complex function of CDKD;3 in cell cycle regulation.

5.
Biochem Soc Trans ; 51(1): 31-39, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36695509

RESUMO

Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved quality control pathway that inhibits the expression of transcripts containing premature termination codon. Transcriptome and phenotypic studies across a range of organisms indicate roles of NMD beyond RNA quality control and imply its involvement in regulating gene expression in a wide range of physiological processes. Studies in moss Physcomitrella patens and Arabidopsis thaliana have shown that NMD is also important in plants where it contributes to the regulation of pathogen defence, hormonal signalling, circadian clock, reproduction and gene evolution. Here, we provide up to date overview of the biological functions of NMD in plants. In addition, we discuss several biological processes where NMD factors implement their function through NMD-independent mechanisms.


Assuntos
Arabidopsis , Degradação do RNAm Mediada por Códon sem Sentido , Plantas/genética , Arabidopsis/genética , Códon sem Sentido , Evolução Molecular
6.
Plant Commun ; 4(3): 100507, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36540022

RESUMO

Double haploid production is the most effective way to create true-breeding lines in a single generation. In Arabidopsis, haploid induction via mutation of the centromere-specific histone H3 (cenH3) has been shown when the mutant is outcrossed to the wild-type, and the wild-type genome remains in the haploid progeny. However, factors that affect haploid induction are still poorly understood. Here, we report that a mutant of the cenH3 assembly factor Kinetochore Null2 (KNL2) can be used as a haploid inducer when pollinated by the wild-type. We discovered that short-term temperature stress of the knl2 mutant increased the efficiency of haploid induction 10-fold. We also demonstrated that a point mutation in the CENPC-k motif of KNL2 is sufficient to generate haploid-inducing lines, suggesting that haploid-inducing lines in crops can be identified in a naturally occurring or chemically induced mutant population, avoiding the generic modification (GM) approach at any stage. Furthermore, a cenh3-4 mutant functioned as a haploid inducer in response to short-term heat stress, even though it did not induce haploids under standard conditions. Thus, we identified KNL2 as a new target gene for the generation of haploid-inducer lines and showed that exposure of centromeric protein mutants to high temperature strongly increases their haploid induction efficiency.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Haploidia , Temperatura , Centrômero/genética , Cinetocoros
7.
Science ; 377(6606): 629-634, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926014

RESUMO

Meiosis, at the transition between diploid and haploid life cycle phases, is accompanied by reprograming of cell division machinery and followed by a transition back to mitosis. We show that, in Arabidopsis, this transition is driven by inhibition of translation, achieved by a mechanism that involves processing bodies (P-bodies). During the second meiotic division, the meiosis-specific protein THREE-DIVISION MUTANT 1 (TDM1) is incorporated into P-bodies through interaction with SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA 7 (SMG7). TDM1 attracts eIF4F, the main translation initiation complex, temporarily sequestering it in P-bodies and inhibiting translation. The failure of tdm1 mutants to terminate meiosis can be overcome by chemical inhibition of translation. We propose that TDM1-containing P-bodies down-regulate expression of meiotic transcripts to facilitate transition of cell fates to postmeiotic gametophyte differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclinas , Meiose , Corpos de Processamento , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular , Ciclinas/genética , Ciclinas/metabolismo , Meiose/genética , Mitose , Corpos de Processamento/metabolismo , Biossíntese de Proteínas
8.
BMC Biol ; 20(1): 134, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676681

RESUMO

BACKGROUND: New genes continuously emerge from non-coding DNA or by diverging from existing genes, but most of them are rapidly lost and only a few become fixed within the population. We hypothesized that young genes are subject to transcriptional and post-transcriptional regulation to limit their expression and minimize their exposure to purifying selection. RESULTS: We performed a protein-based homology search across the tree of life to determine the evolutionary age of protein-coding genes present in the rice genome. We found that young genes in rice have relatively low expression levels, which can be attributed to distal enhancers, and closed chromatin conformation at their transcription start sites (TSS). The chromatin in TSS regions can be re-modeled in response to abiotic stress, indicating conditional expression of young genes. Furthermore, transcripts of young genes in Arabidopsis tend to be targeted by nonsense-mediated RNA decay, presenting another layer of regulation limiting their expression. CONCLUSIONS: These data suggest that transcriptional and post-transcriptional mechanisms contribute to the conditional expression of young genes, which may alleviate purging selection while providing an opportunity for phenotypic exposure and functionalization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Plantas/metabolismo , Sítio de Iniciação de Transcrição
9.
Methods Mol Biol ; 2484: 93-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461447

RESUMO

Live imaging combined with the application of chemical inhibitors is a powerful research tool that enables researchers to precisely time the inhibition of cellular processes and study the consequences of these perturbations. This approach is usually applied to in vitro cultivated cells that are easily accessible to chemical treatments and microscopic observations. Here we describe a method for live cell imaging of Arabidopsis meiocytes embedded within floral organs combined with the application of a chemical drug at desired timepoints during meiosis. We describe a customized solution for the Zeiss Z.1 light sheet microscope, including sample preparation and data processing, and demonstrate its utility for the analysis of meiotic progression upon spindle inhibition.


Assuntos
Arabidopsis , Meiose , Microscopia de Fluorescência/métodos
10.
EMBO Rep ; 23(1): e53995, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34882930

RESUMO

Flowering plants contain a large number of cyclin families, each containing multiple members, most of which have not been characterized to date. Here, we analyzed the role of the B1 subclass of mitotic cyclins in cell cycle control during Arabidopsis development. While we reveal CYCB1;5 to be a pseudogene, the remaining four members were found to be expressed in dividing cells. Mutant analyses showed a complex pattern of overlapping, development-specific requirements of B1-type cyclins with CYCB1;2 playing a central role. The double mutant cycb1;1 cycb1;2 is severely compromised in growth, yet viable beyond the seedling stage, hence representing a unique opportunity to study the function of B1-type cyclin activity at the organismic level. Immunolocalization of microtubules in cycb1;1 cycb1;2 and treating mutants with the microtubule drug oryzalin revealed a key role of B1-type cyclins in orchestrating mitotic microtubule networks. Subsequently, we identified the GAMMA-TUBULIN COMPLEX PROTEIN 3-INTERACTING PROTEIN 1 (GIP1/MOZART) as an in vitro substrate of B1-type cyclin complexes and further genetic analyses support a potential role in the regulation of GIP1 by CYCB1s.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Ciclina B1 , Microtúbulos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte , Ciclina B1/genética , Ciclina B1/metabolismo , Microtúbulos/metabolismo , Mitose/genética
11.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849882

RESUMO

Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.


Assuntos
Proteínas de Arabidopsis/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Arabidopsis , Proteínas de Arabidopsis/genética , Mutação , Telomerase/genética , Telômero/genética
12.
PLoS Genet ; 17(9): e1009779, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591845

RESUMO

Meiosis in angiosperm plants is followed by mitotic divisions to form multicellular haploid gametophytes. Termination of meiosis and transition to gametophytic development is, in Arabidopsis, governed by a dedicated mechanism that involves SMG7 and TDM1 proteins. Mutants carrying the smg7-6 allele are semi-fertile due to reduced pollen production. We found that instead of forming tetrads, smg7-6 pollen mother cells undergo multiple rounds of chromosome condensation and spindle assembly at the end of meiosis, resembling aberrant attempts to undergo additional meiotic divisions. A suppressor screen uncovered a mutation in centromeric histone H3 (CENH3) that increased fertility and promoted meiotic exit in smg7-6 plants. The mutation led to inefficient splicing of the CENH3 mRNA and a substantial decrease of CENH3, resulting in smaller centromeres. The reduced level of CENH3 delayed formation of the mitotic spindle but did not have an apparent effect on plant growth and development. We suggest that impaired spindle re-assembly at the end of meiosis limits aberrant divisions in smg7-6 plants and promotes formation of tetrads and viable pollen. Furthermore, the mutant with reduced level of CENH3 was very inefficient haploid inducer indicating that differences in centromere size is not the key determinant of centromere-mediated genome elimination.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Genes de Plantas , Meiose/genética , Mutação , Arabidopsis/fisiologia , Fertilidade/genética , RNA Mensageiro/genética , Fuso Acromático
13.
Methods Mol Biol ; 2209: 109-117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201465

RESUMO

Molecular processes involved in gene expression encompass multitudes of interactions between proteins and nucleic acids. Quantitative description of these interactions is crucial for delineating the mechanisms governing transcription, genome duplication, and translation. Here we describe a detailed protocol for the quantitative analysis of protein-nucleic acid interactions based on protein-induced fluorescence enhancement (PIFE). While PIFE has mainly been used in single-molecule studies, we modified its application for bulk measurement of protein-nucleic acid interactions in microwell plates using standard fluorescent plate readers. The microwell plate PIFE assay (mwPIFE) is simple, does not require laborious protein labeling, and is high throughput. These properties predispose mwPIFE to become a method of choice for routine applications that require multiple parallel measurements such as buffer optimization, competition experiments, or screening chemical libraries for binding modulators.


Assuntos
DNA/química , Microscopia de Fluorescência/métodos , Nucleoproteínas/química , Proteínas/química , RNA/química , Ligação Proteica
14.
Plant Cell ; 32(9): 2725-2741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32665305

RESUMO

Nonsense-mediated RNA decay (NMD) is an RNA control mechanism that has also been implicated in the broader regulation of gene expression. Nevertheless, a role for NMD in genome regulation has not yet been fully assessed, partially because NMD inactivation is lethal in many organisms. Here, we performed an in-depth comparative analysis of Arabidopsis (Arabidopsis thaliana) mutants lacking the NMD-related proteins UPF3, UPF1, and SMG7. We found different impacts of these proteins on NMD and the Arabidopsis transcriptome, with UPF1 having the biggest effect. Transcriptome assembly in UPF1-null plants revealed genome-wide changes in alternative splicing, suggesting that UPF1 functions in splicing. The inactivation of UPF1 led to translational repression, as manifested by a global shift in mRNAs from polysomes to monosomes and the downregulation of genes involved in translation and ribosome biogenesis. Despite these global changes, NMD targets and mRNAs expressed at low levels with short half-lives were enriched in the polysomes of upf1 mutants, indicating that UPF1/NMD suppresses the translation of aberrant RNAs. Particularly striking was an increase in the translation of TIR domain-containing, nucleotide binding, leucine-rich repeat (TNL) immune receptors. The regulation of TNLs via UPF1/NMD-mediated mRNA stability and translational derepression offers a dynamic mechanism for the rapid activation of TNLs in response to pathogen attack.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/metabolismo , Processamento Alternativo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Mutação , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , RNA Helicases/genética
15.
Elife ; 92020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32041682

RESUMO

In higher plants, germline differentiation occurs during a relatively short period within developing flowers. Understanding of the mechanisms that govern germline differentiation lags behind other plant developmental processes. This is largely because the germline is restricted to relatively few cells buried deep within floral tissues, which makes them difficult to study. To overcome this limitation, we have developed a methodology for live imaging of the germ cell lineage within floral organs of Arabidopsis using light sheet fluorescence microscopy. We have established reporter lines, cultivation conditions, and imaging protocols for high-resolution microscopy of developing flowers continuously for up to several days. We used multiview imagining to reconstruct a three-dimensional model of a flower at subcellular resolution. We demonstrate the power of this approach by capturing male and female meiosis, asymmetric pollen division, movement of meiotic chromosomes, and unusual restitution mitosis in tapetum cells. This method will enable new avenues of research into plant sexual reproduction.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Flores/citologia , Células Germinativas Vegetais/citologia , Microscopia/métodos , Arabidopsis/crescimento & desenvolvimento , Análise Citogenética , Flores/crescimento & desenvolvimento
16.
Plant Direct ; 3(6): e00146, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31245783

RESUMO

Mapping-by-sequencing is a rapid method for identifying both natural as well as induced variations in the genome. However, it requires extensive bioinformatics expertise along with the computational infrastructure to analyze the sequencing data and these requirements have limited its widespread adoption. In the current study, we develop an easy to use tool, artMAP, to discover ethyl methanesulfonate (EMS) induced mutations in the Arabidopsis genome. The artMAP pipeline consists of well-established tools including TrimGalore, BWA, BEDTools, SAMtools, and SnpEff which were integrated in a Docker container. artMAP provides a graphical user interface and can be run on a regular laptop and desktop, thereby limiting the bioinformatics expertise required. artMAP can process input sequencing files generated from single or paired-end sequencing. The results of the analysis are presented in interactive graphs which display the annotation details of each mutation. Due to its ease of use, artMAP makes the identification of EMS-induced mutations in Arabidopsis possible with only a few mouse click. The source code of artMAP is available on Github (https://github.com/RihaLab/artMAP).

17.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160377

RESUMO

Telomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telomerase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas reinhardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. reinhardtii (TTTTAGGG)n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 3' overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii/genética , Telomerase/genética , Telômero/genética , Sequência de Aminoácidos , Sequência de Bases , Variação Genética , Polimorfismo de Fragmento de Restrição , Sequências Repetitivas de Ácido Nucleico , Telomerase/química , Telomerase/metabolismo , Homeostase do Telômero , Encurtamento do Telômero
18.
Front Plant Sci ; 9: 1602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459790

RESUMO

SMG7 proteins are evolutionary conserved across eukaryotes and primarily known for their function in nonsense mediated RNA decay (NMD). In contrast to other NMD factors, SMG7 proteins underwent independent expansions during evolution indicating their propensity to adopt novel functions. Here we characterized SMG7 and SMG7-like (SMG7L) paralogs in Arabidopsis thaliana. SMG7 retained its role in NMD and additionally appears to have acquired another function in meiosis. We inactivated SMG7 by CRISPR/Cas9 mutagenesis and showed that, in contrast to our previous report, SMG7 is not an essential gene in Arabidopsis. Furthermore, our data indicate that the N-terminal phosphoserine-binding domain is required for both NMD and meiosis. Phenotypic analysis of SMG7 and SMG7L double mutants did not indicate any functional redundancy between the two genes, suggesting neofunctionalization of SMG7L. Finally, protein sequence comparison together with a phenotyping of T-DNA insertion mutants identified several conserved regions specific for SMG7 that may underlie its role in NMD and meiosis. This information provides a framework for deciphering the non-canonical functions of SMG7-family proteins.

19.
Plant Cell ; 29(6): 1533-1545, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28584163

RESUMO

Telomeres form specialized chromatin that protects natural chromosome termini from being recognized as DNA double-strand breaks. Plants possess unusual blunt-ended telomeres that are unable to form t-loops or complex with single-strand DNA binding proteins, raising the question of the mechanism behind their protection. We have previously suggested that blunt-ended telomeres in Arabidopsis thaliana are protected by Ku, a DNA repair factor with a high affinity for DNA ends. In nonhomologous end joining, Ku loads onto broken DNA via a channel consisting of positively charged amino acids. Here, we demonstrate that while association of Ku with plant telomeres also depends on this channel, Ku's requirements for DNA binding differ between DNA repair and telomere protection. We show that a Ku complex proficient in DNA loading but impaired in translocation along DNA is able to protect blunt-ended telomeres but is deficient in DNA repair. This suggests that Ku physically sequesters blunt-ended telomeres within its DNA binding channel, shielding them from other DNA repair machineries.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , DNA de Plantas/genética , Autoantígeno Ku/metabolismo , Telômero/genética , Reparo do DNA/genética , Autoantígeno Ku/genética
20.
Sci Rep ; 6: 39653, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008962

RESUMO

Many fundamental biological processes depend on intricate networks of interactions between proteins and nucleic acids and a quantitative description of these interactions is important for understanding cellular mechanisms governing DNA replication, transcription, or translation. Here we present a versatile method for rapid and quantitative assessment of protein/nucleic acid (NA) interactions. This method is based on protein induced fluorescence enhancement (PIFE), a phenomenon whereby protein binding increases the fluorescence of Cy3-like dyes. PIFE has mainly been used in single molecule studies to detect protein association with DNA or RNA. Here we applied PIFE for steady state quantification of protein/NA interactions by using microwell plate fluorescence readers (mwPIFE). We demonstrate the general applicability of mwPIFE for examining various aspects of protein/DNA interactions with examples from the restriction enzyme BamHI, and the DNA repair complexes Ku and XPF/ERCC1. These include determination of sequence and structure binding specificities, dissociation constants, detection of weak interactions, and the ability of a protein to translocate along DNA. mwPIFE represents an easy and high throughput method that does not require protein labeling and can be applied to a wide range of applications involving protein/NA interactions.


Assuntos
Ácidos Nucleicos/química , Proteínas/química , Espectrometria de Fluorescência , Anisotropia , DNA/química , Reparo do DNA , Replicação do DNA , Desoxirribonuclease BamHI/metabolismo , Fluorescência , Corantes Fluorescentes/química , Humanos , Íons , Autoantígeno Ku/química , Microscopia de Fluorescência , Ligação Proteica , Biossíntese de Proteínas , RNA/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...