Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834112

RESUMO

The YopJ group of acetylating effectors from phytopathogens of the genera Pseudomonas and Ralstonia have been widely studied to understand how they modify and suppress their host defence targets. In contrast, studies on a related group of effectors, the Eop1 group, lag far behind. Members of the Eop1 group are widely present in the Erwinia-Pantoea clade of Gram-negative bacteria, which contains phytopathogens, non-pathogens and potential biocontrol agents, implying that they may play an important role in agroecological or pathological adaptations. The lack of research in this group of YopJ effectors has left a significant knowledge gap in their functioning and role. For the first time, we perform a comparative analysis combining AlphaFold modelling, in planta transient expressions and targeted mutational analyses of the Eop1 group effectors from the Erwinia-Pantoea clade, to help elucidate their likely activity and mechanism(s). This integrated study revealed several new findings, including putative binding sites for inositol hexakisphosphate and acetyl coenzyme A and newly postulated target-binding domains, and raises questions about whether these effectors function through a catalytic triad mechanism. The results imply that some Eop1s may use a catalytic dyad acetylation mechanism that we found could be promoted by the electronegative environment around the active site.


Assuntos
Erwinia amylovora , Erwinia , Pantoea , Pseudomonas , Dickeya , Acetilcoenzima A , Doenças das Plantas/microbiologia
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108744

RESUMO

Environmental extremes, such as drought and flooding, are becoming more common with global warming, resulting in significant crop losses. Understanding the mechanisms underlying the plant water stress response, regulated by the abscisic acid (ABA) pathway, is crucial to building resilience to climate change. Potted kiwifruit plants (two cultivars) were exposed to contrasting watering regimes (water logging and no water). Root and leaf tissues were sampled during the experiments to measure phytohormone levels and expression of ABA pathway genes. ABA increased significantly under drought conditions compared with the control and waterlogged plants. ABA-related gene responses were significantly greater in roots than leaves. ABA responsive genes, DREB2 and WRKY40, showed the greatest upregulation in roots with flooding, and the ABA biosynthesis gene, NCED3, with drought. Two ABA-catabolic genes, CYP707A i and ii were able to differentiate the water stress responses, with upregulation in flooding and downregulation in drought. This study has identified molecular markers and shown that water stress extremes induced strong phytohormone/ABA gene responses in the roots, which are the key site of water stress perception, supporting the theory kiwifruit plants regulate ABA to combat water stress.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Desidratação/metabolismo , Secas , Estresse Fisiológico/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Folhas de Planta/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas
3.
New Phytol ; 238(4): 1605-1619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856342

RESUMO

Testing effector knockout strains of the Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) for reduced in planta growth in their native kiwifruit host revealed a number of nonredundant effectors that contribute to Psa3 virulence. Conversely, complementation in the weak kiwifruit pathogen P. syringae pv. actinidifoliorum (Pfm) for increased growth identified redundant Psa3 effectors. Psa3 effectors hopAZ1a and HopS2b and the entire exchangeable effector locus (ΔEEL; 10 effectors) were significant contributors to bacterial colonisation of the host and were additive in their effects on virulence. Four of the EEL effectors (HopD1a, AvrB2b, HopAW1a and HopD2a) redundantly contribute to virulence through suppression of pattern-triggered immunity (PTI). Important Psa3 effectors include several redundantly required effectors early in the infection process (HopZ5a, HopH1a, AvrPto1b, AvrRpm1a and HopF1e). These largely target the plant immunity hub, RIN4. This comprehensive effector profiling revealed that Psa3 carries robust effector redundancy for a large portion of its effectors, covering a few functions critical to disease.


Assuntos
Actinidia , Doenças das Plantas , Doenças das Plantas/microbiologia , Bactérias , Virulência , Imunidade Vegetal , Reconhecimento da Imunidade Inata , Pseudomonas syringae , Proteínas de Bactérias
4.
Plant Cell ; 34(12): 4950-4972, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36130293

RESUMO

Gram-negative bacterial plant pathogens inject effectors into their hosts to hijack and manipulate metabolism, eluding surveillance at the battle frontier on the cell surface. The effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola functions as an ADP-ribosyl transferase that modifies RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-INTERACTING PROTEIN4 (RIN4), leading to the activation of Arabidopsis thaliana (Arabidopsis) resistance protein RPM1. Here we confirmed the ADP-ribosyl transferase activity of another bacterial effector, AvrRpm2Psa from P. syringae pv. actinidiae, via sequential inoculation of Pseudomonas strain Pto DC3000 harboring avrRpm2Psa following Agrobacterium-mediated transient expression of RIN4 in Nicotiana benthamiana. We conducted mutational analysis in combination with mass spectrometry to locate the target site in RIN4. A conserved glutamate residue (Glu156) is the most likely target for AvrRpm2Psa, as only Glu156 could be ADP-ribosylated to activate RPM1 among candidate target residues identified from the MS/MS fragmentation spectra. Soybean (Glycine max) and snap bean (Phaseolus vulgaris) RIN4 homologs without glutamate at the positions corresponding to Glu156 of Arabidopsis RIN4 are not ADP-ribosylated by bacterial AvrRpm2Psa. In contrast to the effector AvrB, AvrRpm2Psa does not require the phosphorylation of Thr166 in RIN4 to activate RPM1. Therefore, separate biochemical reactions by different pathogen effectors may trigger the activation of the same resistance protein via distinct modifications of RIN4.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Glutâmico , Espectrometria de Massas em Tandem , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pseudomonas syringae/metabolismo , Glycine max/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia
5.
Front Plant Sci ; 13: 952301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160984

RESUMO

Defence phytohormone pathways evolved to recognize and counter multiple stressors within the environment. Salicylic acid responsive pathways regulate the defence response to biotrophic pathogens whilst responses to necrotrophic pathogens, herbivory, and wounding are regulated via jasmonic acid pathways. Despite their contrasting roles in planta, the salicylic acid and jasmonic acid defence networks share a common architecture, progressing from stages of biosynthesis, to modification, regulation, and response. The unique structure, components, and regulation of each stage of the defence networks likely contributes, in part, to the speed, establishment, and longevity of the salicylic acid and jasmonic acid signaling pathways in response to hormone treatment and various biotic stressors. Recent advancements in the understanding of the Arabidopsis thaliana salicylic acid and jasmonic acid signaling pathways are reviewed here, with a focus on how the structure of the pathways may be influencing the temporal regulation of the defence responses, and how biotic stressors and the many roles of salicylic acid and jasmonic acid in planta may have shaped the evolution of the signaling networks.

6.
Plant J ; 102(4): 688-702, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31849122

RESUMO

The type three effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola (Pma) triggers an RPM1-mediated immune response linked to phosphorylation of RIN4 (RPM1-interacting protein 4) in Arabidopsis. However, the effector-resistance (R) gene interaction is not well established with different AvrRpm1 effectors from other pathovars. We investigated the AvrRpm1-triggered immune responses in Nicotiana species and isolated Rpa1 (Resistance to Pseudomonas syringae pv. actinidiae 1) via a reverse genetic screen in Nicotiana tabacum. Transient expression and gene silencing were performed in combination with co-immunoprecipitation and growth assays to investigate the specificity of interactions that lead to inhibition of pathogen growth. Two closely related AvrRpm1 effectors derived from Pseudomonas syringae pv. actinidiae biovar 3 (AvrRpm1Psa ) and Pseudomonas syringae pv. syringae strain B728a (AvrRpm1Psy ) trigger immune responses mediated by RPA1, a nucleotide-binding leucine-rich repeat protein with an N-terminal coiled-coil domain. In a display of contrasting specificities, RPA1 does not respond to AvrRpm1Pma , and correspondingly AvrRpm1Psa and AvrRpm1Psy do not trigger the RPM1-mediated response, demonstrating that separate R genes mediate specific immune responses to different AvrRpm1 effectors. AvrRpm1Psa co-immunoprecipitates with RPA1, and both proteins co-immunoprecipitate with RIN4. In contrast with RPM1, however, RPA1 was not activated by the phosphomimic RIN4T166D and silencing of RIN4 did not affect the RPA1 activity. Delivery of AvrRpm1Psa by Pseudomonas syringae pv. tomato (Pto) in combination with transient expression of Rpa1 resulted in inhibition of the pathogen growth in N. benthamiana. Psa growth was also inhibited by RPA1 in N. tabacum.


Assuntos
Arabidopsis/genética , Proteínas de Bactérias/imunologia , Nicotiana/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas/metabolismo , Pseudomonas syringae/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Repetições Ricas em Leucina , Fosforilação , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Proteínas/genética , Nicotiana/imunologia , Nicotiana/microbiologia
7.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861935

RESUMO

APETALA2/ETHYLENE RESPONSE FACTOR transcription factors (AP2/ERFs) play crucial roles in adaptation to stresses such as those caused by pathogens, wounding and cold. Although their name suggests a specific role in ethylene signalling, some ERF members also co-ordinate signals regulated by other key plant stress hormones such as jasmonate, abscisic acid and salicylate. We analysed a set of ERF proteins from three divergent plant species for intrinsically disorder regions containing conserved segments involved in protein-protein interaction known as Molecular Recognition Features (MoRFs). Then we correlated the MoRFs identified with a number of known functional features where these could be identified. Our analyses suggest that MoRFs, with plasticity in their disordered surroundings, are highly functional and may have been shuffled between related protein families driven by selection. A particularly important role may be played by the alpha helical component of the structured DNA binding domain to permit specificity. We also present examples of computationally identified MoRFs that have no known function and provide a valuable conceptual framework to link both disordered and ordered structural features within this family to diverse function.


Assuntos
Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/química , Plantas/genética , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
BMC Res Notes ; 12(1): 63, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691538

RESUMO

OBJECTIVE: Bacterial canker is a destructive disease of kiwifruit caused by the Gram-negative bacterium Pseudomonas syringae pv. actinidiae (Psa). To understand the disease-causing mechanism of Psa, a kiwifruit yeast two-hybrid cDNA library was constructed to identify putative host targets of the Psa Type Three Secreted Effector AvrPto5. RESULTS: In this study, we used the Mate & Plate™ yeast two-hybrid library method for constructing a kiwifruit cDNA library from messenger RNA of young leaves. The constructed library consisted of 2.15 × 106 independent clones with an average insert size of 1.52 kb. The screening of the kiwifruit yeast two-hybrid cDNA library with Psa AvrPto5 revealed the interaction of a V-type proton ATPase subunit-H, a proline rich-protein and heavy metal-associated isoprenylated plant protein 26. Among these, heavy metal-associated isoprenylated plant protein 26 showed a positive interaction with Psa AvrPto5 as both prey and bait.


Assuntos
Actinidia , Proteínas de Bactérias , Frutas , Biblioteca Gênica , Doenças das Plantas , Folhas de Planta , Pseudomonas syringae , Leveduras
9.
BMC Genomics ; 19(1): 822, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442113

RESUMO

BACKGROUND: Pseudomonas syringae is a widespread bacterial species complex that includes a number of significant plant pathogens. Amongst these, P. syringae pv. actinidiae (Psa) initiated a worldwide pandemic in 2008 on cultivars of Actinidia chinensis var. chinensis. To gain information about the expression of genes involved in pathogenicity we have carried out transcriptome analysis of Psa during the early stages of kiwifruit infection. RESULTS: Gene expression in Psa was investigated during the first five days after infection of kiwifruit plantlets, using RNA-seq. Principal component and heatmap analyses showed distinct phases of gene expression during the time course of infection. The first phase was an immediate transient peak of induction around three hours post inoculation (HPI) that included genes that code for a Type VI Secretion System and nutrient acquisition (particularly phosphate). This was followed by a significant commitment, between 3 and 24 HPI, to the induction of genes encoding the Type III Secretion System (T3SS) and Type III Secreted Effectors (T3SE). Expression of these genes collectively accounted for 6.3% of the bacterial transcriptome at this stage. There was considerable variation in the expression levels of individual T3SEs but all followed the same temporal expression pattern, with the exception of hopAS1, which peaked later in expression at 48 HPI. As infection progressed over the time course of five days, there was an increase in the expression of genes with roles in sugar, amino acid and sulfur transport and the production of alginate and colanic acid. These are both polymers that are major constituents of extracellular polysaccharide substances (EPS) and are involved in biofilm production. Reverse transcription-quantitative PCR (RT-qPCR) on an independent infection time course experiment showed that the expression profile of selected bacterial genes at each infection phase correlated well with the RNA-seq data. CONCLUSIONS: The results from this study indicate that there is a complex remodeling of the transcriptome during the early stages of infection, with at least three distinct phases of coordinated gene expression. These include genes induced during the immediate contact with the host, those involved in the initiation of infection, and finally those responsible for nutrient acquisition.


Assuntos
Actinidia/microbiologia , Regulação Bacteriana da Expressão Gênica , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Doenças das Plantas/microbiologia , Fatores de Tempo , Virulência/genética
10.
Mol Plant Microbe Interact ; 31(11): 1179-1191, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204065

RESUMO

The AvrRpt2EA effector protein of Erwinia amylovora is important for pathogen recognition in the fire blight-resistant crabapple Malus × robusta 5; however, little is known about its role in susceptible apples. To study its function in planta, we expressed a plant-optimized version of AvrRpt2EA driven by a heat shock-inducible promoter in transgenic plants of the fire blight-susceptible cultivar Pinova. After induced expression of AvrRpt2EA, transgenic lines showed shoot necrosis and browning of older leaves, with symptoms similar to natural fire blight infections. Transgenic expression of this effector protein resulted in an increase in the expression of the salicylic acid (SA)-responsive PR-1 gene but, also, in the levels of SA and its derivatives, with diverse kinetics in leaves of different ages. In contrast, no increase of expression levels of VSP2 paralogs, used as marker genes for the activation of the jasmonic acid (JA)-dependent defense pathway, could be detected, which is in agreement with metabolic profiling of JA and its derivatives. Our work demonstrates that AvrRpt2EA acts as a virulence factor and induces the formation of SA and SA-dependent systemic acquired resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Erwinia amylovora/genética , Malus/microbiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Bactérias/genética , Ciclopentanos/metabolismo , Resistência à Doença , Erwinia amylovora/patogenicidade , Erwinia amylovora/fisiologia , Interações Hospedeiro-Patógeno , Malus/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Ácido Salicílico/metabolismo , Fatores de Virulência
11.
Int J Mol Sci ; 19(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518008

RESUMO

Organisms face stress from multiple sources simultaneously and require mechanisms to respond to these scenarios if they are to survive in the long term. This overview focuses on a series of key points that illustrate how disorder and post-translational changes can combine to play a critical role in orchestrating the response of organisms to the stress of a changing environment. Increasingly, protein complexes are thought of as dynamic multi-component molecular machines able to adapt through compositional, conformational and/or post-translational modifications to control their largely metabolic outputs. These metabolites then feed into cellular physiological homeostasis or the production of secondary metabolites with novel anti-microbial properties. The control of adaptations to stress operates at multiple levels including the proteome and the dynamic nature of proteomic changes suggests a parallel with the equally dynamic epigenetic changes at the level of nucleic acids. Given their properties, I propose that some disordered protein platforms specifically enable organisms to sense and react rapidly as the first line of response to change. Using examples from the highly dynamic host-pathogen and host-stress response, I illustrate by example how disordered proteins are key to fulfilling the need for multiple levels of integration of response at different time scales to create robust control points.


Assuntos
Epigênese Genética , Interações Hospedeiro-Patógeno , Proteoma/metabolismo , Deficiências na Proteostase/metabolismo , Animais , Humanos , Processamento de Proteína Pós-Traducional , Deficiências na Proteostase/genética
12.
Genome Biol Evol ; 9(4): 932-944, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369338

RESUMO

Recurring epidemics of kiwifruit (Actinidia spp.) bleeding canker disease are caused by Pseudomonas syringae pv. actinidiae (Psa). In order to strengthen understanding of population structure, phylogeography, and evolutionary dynamics, we isolated Pseudomonas from cultivated and wild kiwifruit across six provinces in China. Based on the analysis of 80 sequenced Psa genomes, we show that China is the origin of the pandemic lineage but that strain diversity in China is confined to just a single clade. In contrast, Korea and Japan harbor strains from multiple clades. Distinct independent transmission events marked introduction of the pandemic lineage into New Zealand, Chile, Europe, Korea, and Japan. Despite high similarity within the core genome and minimal impact of within-clade recombination, we observed extensive variation even within the single clade from which the global pandemic arose.


Assuntos
Actinidia/microbiologia , Filogeografia , Doenças das Plantas/genética , Pseudomonas syringae/genética , Actinidia/genética , China , Frutas/microbiologia , Variação Genética , Nova Zelândia , Pandemias , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade
13.
PLoS One ; 12(3): e0172790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249011

RESUMO

Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a 'phenotype of interest' (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with 'Fuzzy-Spreader'-like morphologies were also identified through a visual screen. The second, a 'mutant of interest' (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either by DNA-binding proteins or by the architecture of the nucleoid.


Assuntos
Actinidia/microbiologia , Elementos de DNA Transponíveis , Frutas/microbiologia , Mutação INDEL , Mutagênese Insercional , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Biblioteca Gênica
14.
Genome Announc ; 3(5)2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383666

RESUMO

Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of kiwifruit, a disease that has rapidly spread worldwide. We have fully sequenced and assembled the chromosomal and plasmid DNA from P. syringae pv. actinidiae ICMP 18884 using the PacBio RS II platform.

15.
Plant J ; 84(2): 417-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26358530

RESUMO

The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.


Assuntos
Frutas/genética , Malus/genética , MicroRNAs/genética , Alelos
16.
FEBS J ; 281(17): 3955-79, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25039985

RESUMO

Arabidopsis thaliana (At) RPM1-interacting protein 4 (RIN4), targeted by many defence-suppressing bacterial type III effectors and monitored by several resistance proteins, regulates plant immune responses to pathogen-associated molecular patterns and type III effectors. Little is known about the overall protein structure of AtRIN4, especially in its unbound form, and the relevance of structure to its diverse biological functions. AtRIN4 contains two nitrate-induced (NOI) domains and is a member of the NOI family. Using experimental and bioinformatic approaches, we demonstrate that the unbound AtRIN4 is intrinsically disordered under physiological conditions. The intrinsically disordered polypeptide chain of AtRIN4 is interspersed with molecular recognition features (MoRFs) and anchor-identified long-binding regions, potentially allowing it to undergo disorder-to-order transitions upon binding to partner(s). A poly-l-proline II structure, often responsible for protein recognition, is also identified in AtRIN4. By performing bioinformatics analyses on RIN4 homologues from different plant species and the NOI proteins from Arabidopsis, we infer the conservation of intrinsic disorder, MoRFs and long-binding regions of AtRIN4 in other plant species and the NOI family. Intrinsic disorder and MoRFs could provide RIN4 proteins with the binding promiscuity and plasticity required to act as hubs in a pivotal position within plant defence signalling cascades.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Transporte/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Proteínas Intrinsicamente Desordenadas/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Plantas/química , Plantas/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Temperatura , Trifluoretanol/farmacologia , Tripsina/metabolismo
17.
PLoS Pathog ; 9(7): e1003503, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935484

RESUMO

The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries--even millennia--ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.


Assuntos
Actinidia/microbiologia , Proteínas de Bactérias/genética , Genoma Bacteriano , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Actinidia/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Ilhas Genômicas , Itália , Japão , Nova Zelândia , Filogenia , Doenças das Plantas/etiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Polimorfismo de Nucleotídeo Único , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/isolamento & purificação , Pseudomonas syringae/patogenicidade , Recombinação Genética , República da Coreia , Especificidade da Espécie , Virulência
18.
Plant Cell ; 25(1): 38-55, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23362206

RESUMO

Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes. Plant IDPs play critical roles in plant biology and often act as integrators of signals from multiple plant regulatory and environmental inputs. Binding promiscuity and plasticity allow IDPs to interact with multiple partners in protein interaction networks and provide important functional advantages in molecular recognition through transient protein-protein interactions. Short interaction-prone segments within IDPs, termed molecular recognition features, represent potential binding sites that can undergo disorder-to-order transition upon binding to their partners. In this review, we summarize the evidence for the importance of IDPs in plant biology and evaluate the functions associated with intrinsic disorder in five different types of plant protein families experimentally confirmed as IDPs. Functional studies of these proteins illustrate the broad impact of disorder on many areas of plant biology, including abiotic stress, transcriptional regulation, light perception, and development. Based on the roles of disorder in the protein-protein interactions, we propose various modes of action for plant IDPs that may provide insight for future experimental approaches aimed at understanding the molecular basis of protein function within important plant pathways.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Modelos Moleculares , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/química , Plantas/química , Plantas/efeitos da radiação , Ligação Proteica , Dobramento de Proteína , Proteoma , Transdução de Sinais , Estresse Fisiológico
19.
Biochem J ; 442(1): 1-12, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22280012

RESUMO

IDPs (intrinsically disordered proteins) are highly abundant in eukaryotic proteomes and important for cellular functions, especially in cell signalling and transcriptional regulation. An IDR (intrinsically disordered region) within an IDP often undergoes disorder-to-order transitions upon binding to various partners, allowing an IDP to recognize and bind different partners at various binding interfaces. Plant-specific GRAS proteins play critical and diverse roles in plant development and signalling, and act as integrators of signals from multiple plant growth regulatory and environmental inputs. Possessing an intrinsically disordered N-terminal domain, the GRAS proteins constitute the first functionally required unfoldome from the plant kingdom. Furthermore, the N-terminal domains of GRAS proteins contain MoRFs (molecular recognition features), short interaction-prone segments that are located within IDRs and are able to recognize their interacting partners by undergoing disorder-to-order transitions upon binding to these specific partners. These MoRFs represent potential protein-protein binding sites and may be acting as molecular bait in recognition events during plant development. Intrinsic disorder provides GRAS proteins with a degree of binding plasticity that may be linked to their functional versatility. As an overview of structure-function relationships for GRAS proteins, the present review covers the main biological functions of the GRAS family, the IDRs within these proteins and their implications for understanding mode-of-action.


Assuntos
Proteínas de Plantas/fisiologia , Plantas/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Motivos de Aminoácidos , Meristema/crescimento & desenvolvimento , Fosforilação , Fitocromo A/fisiologia , Desenvolvimento Vegetal , Nodulação/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Dobramento de Proteína , Estrutura Terciária de Proteína/fisiologia
20.
Annu Rev Phytopathol ; 49: 391-413, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21599495

RESUMO

The apple scab (Venturia inaequalis-Malus) pathosystem was one of the first systems for which Flor's concept of gene-for-gene (GfG) relationships between the host plant and the pathogen was demonstrated. There is a rich resource of host resistance genes present in Malus germplasm that could potentially be marshalled to confer durable resistance against this most important apple disease. A comprehensive understanding of the host-pathogen interactions occurring in this pathosystem is a prerequisite for effectively manipulating these host resistance factors. An accurate means of identification of specific resistance and consistent use of gene nomenclature is critical for this process. A set of universally available, differentially resistant hosts is described, which will be followed by a set of defined pathogen races at a later stage. We review pertinent aspects of the history of apple scab research, describe the current status and future directions of this research, and resolve some outstanding issues.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Variação Genética/genética , Malus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Genes Fúngicos/genética , Genes de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Malus/genética , Malus/imunologia , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...