RESUMO
The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms, repeatedly causing damage to Chilean coastal waters. The causes and behavior of algal blooms are complex and vary across different regions. As bacterial interactions with algal species are increasingly recognized as a key factor driving algal blooms, the present study identifies several bacterial candidates potentially associated with Chilean Alexandrium catenella. This research narrowed down the selection of bacteria from the Chilean A. catenella culture using antibiotic treatment and 16S rRNA metabarcoding analysis. Subsequently, seawater from two Chilean coastal stations, Isla Julia and Isla San Pedro, was monitored for two years to detect Alexandrium species and the selected bacteria, utilizing 16S and 18S rRNA gene metabarcoding analyses. The results suggested a potential association between Alexandrium species and Spongiibacteraceae at both stations. The proposed candidate bacteria within the Spongiibacteraceae family, potentially engaging in mutualistic relationships with Alexandrium species, included the genus of BD1-7 clade, Spongiibbacter, and Zhongshania.
Assuntos
Dinoflagellida , RNA Ribossômico 16S , Simbiose , Dinoflagellida/genética , Dinoflagellida/fisiologia , Chile , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Proliferação Nociva de Algas , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 18S/genéticaRESUMO
The Reloncaví estuary in southern Chile is famous for its aquaculture. However, recurring harmful algal blooms have adversely affected mussel production. Therefore, regular monitoring of algal toxins is urgently needed to better understand the contamination status of the estuary. In this study, we quantified 15 types of lipophilic shellfish toxins in Metri Bay in the Reloncaví estuary on a biweekly basis for 4 years. We identified algal species using microscopy and metabarcoding analysis. We also measured water temperature, salinity, chlorophyll-a, and dissolved oxygen to determine the potential relationships of these parameters with algal toxin production. Our results revealed the presence of a trace amount of pectenotoxin and the causal phytoplankton Dinophysis, as well as yessotoxin and the causal phytoplankton Protoceratium. Statistical analysis indicated that fluctuations in water temperature affected the detection of these toxins. Additionally, metabarcoding analysis detected the highly toxic phytoplankton Alexandrium spp. in some samples. Although our results suggest that the level of lipophilic shellfish toxins in Metri Bay during the study period was insignificantly low using our current LC-MS method, the confirmed presence of highly toxic algae in Metri Bay raises concerns, given that favorable environmental conditions could cause blooms.
Assuntos
Monitoramento Ambiental , Estuários , Proliferação Nociva de Algas , Toxinas Marinhas , Fitoplâncton , Chile , Toxinas Marinhas/análise , Animais , DinoflagellidaRESUMO
Endophytes isolated from extremophile plants are interesting microbes for improving the stress tolerance of agricultural plants. Here, we isolated and characterized endophytic bacteria showing plant growth-promoting (PGP) traits from plants in two extreme Chilean biomes (Atacama Desert and Chilean Patagonia). Forty-two isolates were characterized as both halotolerant auxin producers (2-51 mg L-1) and 1-aminocyclopropane-1-carboxylate (ACC)-degrading bacteria (15-28 µmol αKB mg protein-1 h-1). The most efficient isolates were tested as single strains, in dual and triple consortia, or in combination with previously reported PGP rhizobacteria (Klebsiella sp. 27IJA and 8LJA) for their impact on the germination of salt-exposed (0.15 M and 0.25 M NaCl) wheat seeds. Interestingly, strain P1R9, identified as Variovorax sp., enhanced wheat germination under salt stress conditions when applied individually or as part of bacterial consortia. Under salt stress, plants inoculated with dual consortia containing the strain Variovorax sp. P1R9 showed higher biomass (41%) and reduced lipid peroxidation (33-56%) than uninoculated plants. Although the underlying mechanisms remain elusive, our data suggest that the application of Variovorax sp. P1R9, alone or as a member of PGP consortia, may improve the salt stress tolerance of wheat plants.
Assuntos
Comamonadaceae , Magnésio , Radioisótopos , Triticum , Estresse Salino , Desenvolvimento Vegetal , Tolerância ao SalRESUMO
Harmful Algal Blooms (HABs) have caused damage to the marine environment in Isla San Pedro in the Gulf of Corcovado, Chile. While rising water temperature and artificial eutrophication are the most discussed topics as a cause, marine bacteria is a recent attractive parameter as an algal bloom driver. This study monitored algal and bacterial compositions in the water of Isla San Pedro for one year using microscopy and 16S rRNA metabarcoding analysis, along with physicochemical parameters. The collected data were analyzed with various statistical tools to understand how the particle-associated bacteria (PA) and the free-living (FL) bacteria were possibly involved in algal blooms. Both FL and PA fractions maintained a stable bacterial composition: the FL fraction was dominated by Proteobacteria (α-Proteobacteria and γ-Proteobacteria), and Cyanobacteria dominated the PA fraction. The two fractions contained equivalent bacterial taxonomic richness (c.a. 8,000 Operational Taxonomic Units) and shared more than 50% of OTU; however, roughly 20% was exclusive to each fraction. The four most abundant algal genera in the Isla San Pedro water were Thalassiosira, Skeletonema, Chaetoceros, and Pseudo-nitzchia. Statistical analysis identified that the bacterial species Polycyclovorans algicola was correlated with Pseudo-nitzschia spp., and our monitoring data recorded a sudden increase of particle-associated Polycyclovorans algicola shortly after the increase of Pseudo-nitzschia, suggesting that P. algicola may have regression effect on Pseudo-nitzschia spp. The study also investigated the physicochemical parameter effect on algal-bacterial interactions. Oxygen concentration and chlorophyll-a showed a strong correlation with both FL and PA bacteria despite their assemblage differences, suggesting that the two groups had different mechanisms for interacting with algal species.
RESUMO
Thraustochytrids are aquatic unicellular protists organisms that represent an important reservoir of a wide range of bioactive compounds, such as essential polyunsaturated fatty acids (PUFAs) such as arachidonic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), which are involved in the regulation of the immune system. In this study, we explore the use of co-cultures of Aurantiochytrium sp. and bacteria as a biotechnological tool capable of stimulating PUFA bioaccumulation. In particular, the co-culture of lactic acid bacteria and the protist Aurantiochytrium sp. T66 induce PUFA bioaccumulation, and the lipid profile was evaluated in cultures at different inoculation times, with two different strains of lactic acid bacteria capable of producing the tryptophan dependent auxins, and one strain of Azospirillum sp., as a reference for auxin production. Our results showed that the Lentilactobacillus kefiri K6.10 strain inoculated at 72 h gives the best PUFA content (30.89 mg g-1 biomass) measured at 144 h of culture, three times higher than the control (8.87 mg g-1 biomass). Co-culture can lead to the generation of complex biomasses with higher added value for developing aquafeed supplements.
Assuntos
Lactobacillales , Estramenópilas , Técnicas de Cocultura , Ácidos Graxos Insaturados , Ácidos Docosa-Hexaenoicos , Ácidos GraxosRESUMO
Lake Villarrica, one of Chile's main freshwater water bodies, was recently declared a nutrient-saturated lake due to increased phosphorus (P) and nitrogen (N) levels. Although a decontamination plan based on environmental parameters is being established, it does not consider microbial parameters. Here, we conducted high-throughput DNA sequencing and quantitative polymerase chain reaction (qPCR) analyses to reveal the structure and functional properties of bacterial communities in surface sediments collected from sites with contrasting anthropogenic pressures in Lake Villarrica. Alpha diversity revealed an elevated bacterial richness and diversity in the more anthropogenized sediments. The phylum Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria dominated the community. The principal coordinate analysis (PCoA) and redundancy analysis (RDA) showed significant differences in bacterial communities of sampling sites. Predicted functional analysis showed that N cycling functions (e.g., nitrification and denitrification) were significant. The microbial co-occurrence networks analysis suggested Chitinophagaceae, Caldilineaceae, Planctomycetaceae, and Phycisphaerae families as keystone taxa. Bacterial functional genes related to P (phoC, phoD, and phoX) and N (nifH and nosZ) cycling were detected in all samples by qPCR. In addition, an RDA related to N and P cycling revealed that physicochemical properties and functional genes were positively correlated with several nitrite-oxidizing, ammonia-oxidizing, and N-fixing bacterial genera. Finally, denitrifying gene (nosZ) was the most significant factor influencing the topological characteristics of co-occurrence networks and bacterial interactions. Our results represent one of a few approaches to elucidate the structure and role of bacterial communities in Chilean lake sediments, which might be helpful in conservation and decontamination plans.
Assuntos
Bactérias , Lagos , Humanos , Lagos/microbiologia , Chile , Bactérias/genética , Proteobactérias/genética , Genes Bacterianos , Bacteroidetes/genética , Sedimentos Geológicos/microbiologiaRESUMO
Phosphorus (P) cycling by microbial activity is highly relevant in the eutrophication of lakes. In this context, the contents of organic (Po) and inorganic (Pi) phosphorus, the activity of acid (ACP) and alkaline (ALP) phosphomonoesterase (Pase), and the abundances of bacterial Pase genes (phoD, phoC, and phoX) were studied in sediments from Budi Lake, a eutrophic coastal brackish water lake in Chile. Our results showed spatiotemporal variations in P fractions, Pase activities, and Pase gene abundances. In general, our results showed higher contents of Pi (110-144 mg kg-1), Po (512-576 mg kg-1), and total P (647-721 mg kg-1) in sediments from the more anthropogenized sampling sites in summer compared with those values of Pi (86-127 mg kg-1), Po (363-491 mg kg-1) and total P (449-618 mg kg-1) in less anthropogenized sampling sites in winter. In concordance, sediments showed higher Pase activities (µg nitrophenyl phosphate g-1 h-1) in sediments from the more anthropogenized sampling sites (9.7-22.7 for ACP and 5.9 to 9.6 for ALP) compared with those observed in less anthropogenized sampling sites in winter (4.2-12.9 for ACP and 0.3 to 6.7 for ALP). Higher abundances (gene copy g-1 sediment) of phoC (8.5-19 × 108), phoD (9.2-47 × 106), and phoX (8.5-26 × 106) genes were also found in sediments from the more anthropogenized sampling sites in summer compared with those values of phoC (0.1-1.1 × 108), phoD (1.4-2.4 × 106) and phoX (0.7-1.2 × 106) genes in the less anthropogenized sites in winter. Our results also showed a positive correlation between P contents, Pase activities, and abundances of bacterial Pase genes, independent of seasonality. The present study provided information on the microbial activity involved in P cycling in sediments of Budi Lake, which may be used in further research as indicators for the monitoring of eutrophication of lakes.
Assuntos
Lagos , Poluentes Químicos da Água , Chile , China , Monitoramento Ambiental/métodos , Eutrofização , Sedimentos Geológicos , Monoéster Fosfórico Hidrolases , Fósforo/análise , Águas Salinas , Poluentes Químicos da Água/análiseRESUMO
Temuco (Chile) is one of the most polluted cities in Chile and Latin America. Although the fine fraction of particulate matter (PM2.5) has been extensively studied and monitored due to its negative impact on public health, its microbiological components remain unknown. We explored, the airborne bacterial community in PM2.5 under good, moderate, alert, pre-emergency and emergency indices of air quality (AQIs) established by the Chilean government. Bacterial community relationship with environmental factors (PM2.5, PM10, carbon monoxide, among others), was also evaluated. Significant differences in PM2.5 bacterial community composition associated with AQIs were revealed, using 16S rRNA target sequences of denaturing gradient gel electrophoresis (DGGE) bands. Bacterial communities in PM2.5 were mainly clustered (80%) into emergency and pre-emergency samples. The dominant phylum was Proteobacteria and most abundant genus was Novosphingobium, traditionally related to opportunistic respiratory diseases. The main factors associated with community structure were PM2.5, PM10 and carbon monoxide concentrations. This study exposed that bacterial community composition in Temuco varies according to AQIs, with the occurrence of potential opportunistic bacteria on heavily polluted days.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Bactérias/genética , Chile , Cidades , Monitoramento Ambiental , Material Particulado/análise , RNA Ribossômico 16S/genéticaRESUMO
Harmful algae blooms (HABs) monitoring has been implemented worldwide, and Chile, a country famous for its fisheries and aquaculture, has intensively used microscopic and toxin analyses for decades for this purpose. Molecular biological methods, such as high-throughput DNA sequencing and bacterial assemblage-based approaches, are just beginning to be introduced in Chilean HAB monitoring, and the procedures have not yet been standardized. Here, 16S rRNA and 18S rRNA metabarcoding analyses for monitoring Chilean HABs are introduced stepwise. According to a recent hypothesis, algal-bacterial mutualistic association plays a critical synergetic or antagonistic relationship accounting for bloom initiation, maintenance, and regression. Thus, monitoring HAB from algal-bacterial perspectives may provide a broader understanding of HAB mechanisms and the basis for early warning. Metabarcoding analysis is one of the best suited molecular-based tools for this purpose because it can detect massive algal-bacterial taxonomic information in a sample. The visual procedures of sampling to metabarcoding analysis herein provide specific instructions, aiming to reduce errors and collection of reliable data.
Assuntos
Aquicultura , Proliferação Nociva de Algas , Chile , RNA Ribossômico 16S/genéticaRESUMO
Azospirillum-based plant and soil inoculants are widely used in agriculture. The inoculated Azospirillum strains are commonly tracked by both culture-dependent and culture-independent methods, which are time-consuming or expensive. In this context, clustered regularly interspaced short palindromic repeats (CRISPR) loci structure is unique in the bacterial genome, including some Azospirillum species. Here, we investigated the use of CRISPR loci to track specific Azospirillum strains in soils systems by PCR. Primer sets for Azospirillum sp. strain B510 were designed and evaluated by colony and endpoint PCR. The CRISPRloci-PCR approach was standardized for Azospirillum sp. strain B510, and its specificity was observed by testing against 9 different Azospirillum strains, and 38 strains of diverse bacterial genera isolated from wheat plants. The CRISPRloci-PCR approach was validated in assays with substrate and wheat seedlings. Azospirillum sp. strain B510 was detected after of two weeks of inoculation in both sterile and nonsterile substrates as well as rhizosphere grown in sterile substrate. The CRISPRloci-PCR approach was found to be a useful molecular tool for specific tracking of Azospirillum at the strain level. This technique can be easily adapted to other microbial inoculants carrying CRISPR loci and can be used to complement other microbiological techniques.
RESUMO
Phytoplankton blooms, including harmful algal blooms (HABs), have serious impacts on ecosystems, public health, and productivity activities. Rapid detection and monitoring of marine microalgae are important in predicting and managing HABs. We developed a toolkit, the Suitcase Lab, to detect harmful algae species in the field. We demonstrated the Suitcase Lab's capabilities for sampling, filtration, DNA extraction, and loop-mediated isothermal amplification (LAMP) detection in cultured Alexandrium catenella cells as well as Chilean coastal waters from four sites: Repollal, Isla García, Puerto Montt, and Metri. A LAMP assay using the Suitcase Lab in the field confirmed microscopic observations of A. catenella in samples from Repollal and Isla García. The Suitcase Lab allowed the rapid detection of A. catenella, within 2 h from the time of sampling, even at a single cell per milliliter concentrations, demonstrating its usefulness for quick and qualitative on-site diagnosis of target toxic algae species. This method is applicable not only to detecting harmful algae but also to other field studies that seek a rapid molecular diagnostic test.
Assuntos
Dinoflagellida , Ecossistema , Chile , Dinoflagellida/genética , Proliferação Nociva de Algas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido NucleicoRESUMO
Harmful algae blooms (HABs) cause acute effects on marine ecosystems due to their production of endogenous toxins or their enormous biomass, leading to significant impacts on local economies and public health. Although HAB monitoring has been intensively performed at spatiotemporal scales in coastal areas of the world over the last decades, procedures have not yet been standardized. HAB monitoring procedures are complicated and consist of many methodologies, including physical, chemical, and biological water sample measurements. Each monitoring program currently uses different combinations of methodologies depending on site specific purposes, and many prior programs refer to the procedures in quotations. HAB monitoring programs in Chile have adopted the traditional microscopic and toxin analyses but not molecular biology and bacterial assemblage approaches. Here we select and optimize the HAB monitoring methodologies suitable for Chilean geography, emphasizing on metabarcoding analyses accompanied by the classical tools with considerations including cost, materials and instrument availability, and easiness and efficiency of performance. We present results from a pilot study using the standardized stepwise protocols, demonstrating feasibility and plausibility for sampling and analysis for the HAB monitoring. Such specific instructions in the standardized protocol are critical obtaining quality data under various research environments involving multiple stations, different analysts, various time-points, and long HAB monitoring duration.
Assuntos
Aquicultura , Ecossistema , Pesqueiros , Proliferação Nociva de Algas , Chile , Projetos PilotoRESUMO
Acidic ash derived volcanic soils (Andisols) support 50% of cereal production in Chile. Nitrogen (N) is essential for cereal crops and commonly added as urea with consequent environmental concerns due to leaching. Despite the relevance of N to plant growth, few studies have focused on understanding the application, management and ecological role of N2-fixing bacterial populations as tool for improve the N nutrition of cereal crops in Chile. It is known that N2-fixing bacteria commonly inhabits diverse plant compartments (e.g., rhizosphere and root endosphere) where they can supply N for plant growth. Here, we used culture-independent and dependent approaches to characterize and compare the putative N2-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an Andisol from southern Chile. Our results showed significantly greater bacterial loads in the rhizosphere than the root endosphere. Quantitative PCR results indicated that the copy number of the 16S rRNA gene ranged from 1012~1013 and 107~108 g-1 sample in rhizosphere and root endosphere, respectively. The nifH gene copy number ranged from 105~106 and 105 g-1 sample in rhizosphere and root endosphere, respectively. The total culturable bacteria number ranged from 109~1010 and 107~108 CFU g-1 sample in rhizosphere and 104~105 and 104 CFU g-1 sample in root endosphere using LB and NM-1 media, respectively. Indirect counts of putative N2-fixing bacteria were 103 and 102~103 CFU g-1 sample in rhizosphere and root endosphere using NFb medium, respectively. Sequencing of 16S rRNA genes from randomly selected putative N2-fixing bacteria revealed the presence of members of Proteobacteria (Bosea and Roseomonas), Actinobacteria (Georgenia, Mycobacterium, Microbacterium, Leifsonia, and Arthrobacter), Bacteroidetes (Chitinophaga) and Firmicutes (Bacillus and Psychrobacillus) taxa. Differences in 16S rRNA and putative nifH-containing bacterial communities between rhizosphere and root endosphere were shown by denaturing gradient gel electrophoresis (DGGE). This study shows a compartmentalization between rhizosphere and root endosphere for both the abundance and diversity of total (16S rRNA) and putative N2-fixing bacterial communities on wheat plants grown in Chilean Andisols. This information can be relevant for the design and application of agronomic strategies to enhance sustainable N-utilization in cereal crops in Chile.
RESUMO
Biochar (BC) is gaining attention as a soil amendment that can remediate metal polluted soils. The simultaneous effects of BC on copper (Cu) mobility, microbial activities in soil using metallophytes have scarcely been addressed. The objective of this study was to evaluate the effects of biochar BCs on Cu immobilization and over soil microbial communities in a Cu-contaminated soil evaluated over a two-year trial. A Cu-contaminated soil (338mgkg-1) was incubated with chicken manure biochar (CMB) or oat hull biochar (OHB) at rates of 1 and 5% w/w. Metallophyte Oenothera picensis was grown over one season (six months). The above process was repeated for 3 more consecutive seasons using the same soils. The BCs increased the soil pH and decreased the Cu exchangeable fraction Cu by 5 and 10 times (for OHB and CMB, respectively) by increasing the Cu bound in organic matter and residual fractions, and its effects were consistent across all seasons evaluated. BCs provided favorable habitat for microorganisms that was evident in increased microbial activity. The DHA activity was increased in all BC treatments, reaching a maximum of 7 and 6 times higher than control soils in CMB and OHB. Similar results were observed in microbial respiration, which increased 53% in OHB and 61% in CMB with respect to control. The BCs produced changes in microbial communities in all seasons evaluated. The fungal and bacterial richness were increased by CMB and OHB treatments; however, no clear effects were observed in the microbial diversity estimators. The physiochemical and microbiological effects produced by BC result in an increase of plant biomass production, which was on average 3 times higher than control treatments. However, despite being a metallophyte, O. picensis did not uptake Cu efficiently. Root and shoot Cu concentrations decreased or changed insignificantly in most BC treatments.
Assuntos
Carvão Vegetal/química , Cobre/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Bactérias/metabolismo , Cobre/química , Poluição Ambiental/estatística & dados numéricos , Fungos/metabolismo , Poluentes do Solo/químicaRESUMO
Chile is topographically and climatically diverse, with a wide array of diverse undisturbed ecosystems that include native plants that are highly adapted to local conditions. However, our understanding of the diversity, activity, and role of rhizobacteria associated with natural vegetation in undisturbed Chilean extreme ecosystems is very poor. In the present study, the combination of denaturing gradient gel electrophoresis and 454-pyrosequencing approaches was used to describe the rhizobacterial community structures of native plants grown in three representative Chilean extreme environments: Atacama Desert (ATA), Andes Mountains (AND), and Antarctic (ANT). Both molecular approaches revealed the presence of Proteobacteria, Bacteroidetes, and Actinobacteria as the dominant phyla in the rhizospheres of native plants. Lower numbers of operational taxonomic units (OTUs) were observed in rhizosphere soils from ATA compared with AND and ANT. Both approaches also showed differences in rhizobacterial community structures between extreme environments and between plant species. The differences among plant species grown in the same environment were attributed to the higher relative abundance of classes Gammaproteobacteria and Alphaproteobacteria. However, further studies are needed to determine which environmental factors regulate the structures of rhizobacterial communities, and how (or if) specific bacterial groups may contribute to the growth and survival of native plants in each Chilean extreme environments.
Assuntos
Bactérias/classificação , Ambientes Extremos , Raízes de Plantas/microbiologia , Plantas/microbiologia , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Regiões Antárticas , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sequência de Bases , Biodiversidade , Chile , Classificação , Clima , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Clima Desértico , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Concentração de Íons de Hidrogênio , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Rizosfera , Solo/química , Especificidade da EspécieRESUMO
Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required.