Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892675

RESUMO

Since its discovery in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread over the world, having a huge impact on people's lives and health. The respiratory system is often targeted in people with the coronavirus disease 2019 (COVID-19). The virus can also infect many organs and tissues in the body, including the reproductive system. The consequences of the SARS-CoV-2 infection on fertility and pregnancy in hosts are poorly documented. Available data on other coronaviruses, such as severe acute respiratory syndrome (SARS-CoV) and Middle Eastern Respiratory Syndrome (MERS-CoV) coronaviruses, identified pregnant women as a vulnerable group with increased pregnancy-related complications. COVID-19 was also shown to impact pregnancy, which can be seen in either the mother or the fetus. Pregnant women more likely require COVID-19 intensive care treatment than non-pregnant women, and they are susceptible to giving birth prematurely and having their newborns admitted to the neonatal intensive care unit. Angiotensin converting enzyme 2 (ACE2), a key player of the ubiquitous renin-angiotensin system (RAS), is the principal host cellular receptor for SARS-CoV-2 spike protein. ACE2 is involved in the regulation of both male and female reproductive systems, suggesting that SARS-CoV-2 infection and associated RAS dysfunction could affect reproduction. Herein, we review the current knowledge about COVID-19 consequences on male and female fertility, pregnant women, and their fetuses. Furthermore, we describe the effects of COVID-19 vaccination on reproduction.

2.
Biology (Basel) ; 11(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35741410

RESUMO

The complications following snake bite envenoming are due to the venom's biological activities, which can act on different systems of the prey. These activities arise from the fact that snake venoms are rich in bioactive molecules, which are also of interest for designing drugs. The venom of Montivipera bornmuelleri, known as the Lebanon viper, has been shown to exert antibacterial, anticancer, and immunomodulatory effects. However, the venom's activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Because zebrafish is a convenient model to study tissue alterations induced by toxic agents, we challenged it with the venom of Montivipera bornmuelleri. We show that this venom leads to developmental toxicity but not teratogenicity in zebrafish embryos. The venom also induces neurotoxic effects and disrupts the zebrafish cardiovascular system, leading to heartbeat rate reduction and hemorrhage. Our findings demonstrate the potential neurotoxicity and cardiotoxicity of M. bornmuelleri's venom, suggesting a multitarget strategy during envenomation.

3.
Molecules ; 27(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35566253

RESUMO

COVID-19 has expanded across the world since its discovery in Wuhan (China) and has had a significant impact on people's lives and health. Long COVID is a term coined by the World Health Organization (WHO) to describe a variety of persistent symptoms after acute SARS-CoV-2 infection. Long COVID has been demonstrated to affect various SARS-CoV-2-infected persons, independently of the acute disease severity. The symptoms of long COVID, like acute COVID-19, consist in the set of damage to various organs and systems such as the respiratory, cardiovascular, neurological, endocrine, urinary, and immune systems. Fatigue, dyspnea, cardiac abnormalities, cognitive and attention impairments, sleep disturbances, post-traumatic stress disorder, muscle pain, concentration problems, and headache were all reported as symptoms of long COVID. At the molecular level, the renin-angiotensin system (RAS) is heavily involved in the pathogenesis of this illness, much as it is in the acute phase of the viral infection. In this review, we summarize the impact of long COVID on several organs and tissues, with a special focus on the significance of the RAS in the disease pathogenesis. Long COVID risk factors and potential therapy approaches are also explored.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , COVID-19/complicações , Humanos , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
5.
Antibiotics (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572678

RESUMO

Antimicrobial peptides constitute one of the most promising alternatives to antibiotics since they could be used to treat bacterial infections, especially those caused by multidrug-resistant pathogens. Many antimicrobial peptides, with various activity spectra and mechanisms of actions, have been described. This review focuses on their use against ESKAPE bacteria, especially in biofilm treatments, their synergistic activity, and their application as prophylactic agents. Limitations and challenges restricting therapeutic applications are highlighted, and solutions for each challenge are evaluated to analyze whether antimicrobial peptides could replace antibiotics in the near future.

6.
Molecules ; 26(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921462

RESUMO

Cardiovascular diseases (CVDs) are considered as a major cause of death worldwide. Therefore, identifying and developing therapeutic strategies to treat and reduce the prevalence of CVDs is a major medical challenge. Several drugs used for the treatment of CVDs, such as captopril, emerged from natural products, namely snake venoms. These venoms are complex mixtures of bioactive molecules, which, among other physiological networks, target the cardiovascular system, leading to them being considered in the development and design of new drugs. In this review, we describe some snake venom molecules targeting the cardiovascular system such as phospholipase A2 (PLA2), natriuretic peptides (NPs), bradykinin-potentiating peptides (BPPs), cysteine-rich secretory proteins (CRISPs), disintegrins, fibrinolytic enzymes, and three-finger toxins (3FTXs). In addition, their molecular targets, and mechanisms of action-vasorelaxation, inhibition of platelet aggregation, cardioprotective activities-are discussed. The dissection of their biological effects at the molecular scale give insights for the development of future snake venom-derived drugs.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Venenos de Serpentes/química , Venenos de Serpentes/uso terapêutico , Animais , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Humanos , Modelos Biológicos , Venenos de Serpentes/farmacologia
7.
Infect Disord Drug Targets ; 21(4): 534-540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32988357

RESUMO

BACKGROUND: Tobacco mosaic virus (TMV) is the most known virus in the plant mosaic virus family and is able to infect a wide range of crops, in particular, tobacco, causing a production loss. OBJECTIVES: Herein, and for the first time in Lebanon, we investigated the presence of TMV infection in crops by analyzing 88 samples of tobacco, tomato, cucumber and pepper collected from different regions in North Lebanon. METHODS: Double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), revealed a potential TMV infection of four tobacco samples out of 88 crop samples collected. However, no tomato, cucumber and pepper samples were infected. The TMV+ tobacco samples were then extensively analyzed by RT-PCR to detect viral RNA using different primers covering all the viral genome. RESULTS AND DISCUSSION: PCR results confirmed those of DAS-ELISA showing TMV infection of four tobacco samples collected from three crop fields of North Lebanon. In only one of four TMV+ samples, we were able to amplify almost all the regions of viral genome, suggesting possible mutations in the virus genome or an infection with a new, not yet identified, TMV strain. CONCLUSION: Our study is the first in Lebanon, revealing TMV infection in crop fields and highlighting the danger that may affect the future of agriculture.


Assuntos
Vírus do Mosaico do Tabaco , Ensaio de Imunoadsorção Enzimática , Líbano , RNA Viral , Nicotiana/genética , Vírus do Mosaico do Tabaco/genética
8.
PeerJ ; 8: e9909, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194364

RESUMO

BACKGROUND: Montivipera bornmuelleri's venom has shown immunomodulation of cytokines release in mice and selective cytotoxicity on cancer cells in a dose-dependent manner, highlighting an anticancer potential. Here, we extend these findings by elucidating the sensitivity of murine B16 skin melanoma and 3-MCA-induced murine fibrosarcoma cell lines to M. bornmuelleri's venom and its effect on tumor growth in vivo. METHODS: The toxicity of the venom on B16 and MCA cells was assessed using flow cytometry and xCELLigence assays. For in vivo testing, tumor growth was followed in mice after intratumoral venom injection. RESULTS: The venom toxicity showed a dose-dependent cell death on both B16 and MCA cells. Interestingly, overexpression of ovalbumin increased the sensitivity of the cells to the venom. However, the venom was not able to eradicate induced-tumor growth when injected at 100 µg/kg. Our study demonstrates a cytotoxic effect of M. bornmuelleri's venom in vitro which, however, does not translate to an anticancer action in vivo.

9.
Sci Rep ; 10(1): 15338, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948826

RESUMO

While the role of cholinergic neurotransmission from motoneurons is well established during neuromuscular development, whether it regulates central nervous system development in the spinal cord is unclear. Zebrafish presents a powerful model to investigate how the cholinergic system is set up and evolves during neural circuit formation. In this study, we carried out a detailed spatiotemporal analysis of the cholinergic system in embryonic and larval zebrafish. In 1-day-old embryos, we show that spinal motoneurons express presynaptic cholinergic genes including choline acetyltransferase (chata), vesicular acetylcholine transporters (vachta, vachtb), high-affinity choline transporter (hacta) and acetylcholinesterase (ache), while nicotinic acetylcholine receptor (nAChR) subunits are mainly expressed in interneurons. However, in 3-day-old embryos, we found an unexpected decrease in presynaptic cholinergic transcript expression in a rostral to caudal gradient in the spinal cord, which continued during development. On the contrary, nAChR subunits remained highly expressed throughout the spinal cord. We found that protein and enzymatic activities of presynaptic cholinergic genes were also reduced in the rostral spinal cord. Our work demonstrating that cholinergic genes are initially expressed in the embryonic spinal cord, which is dynamically downregulated during development suggests that cholinergic signaling may play a pivotal role during the formation of intra-spinal locomotor circuit.


Assuntos
Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Medula Espinal/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/metabolismo , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Embrião não Mamífero , Larva/metabolismo , Neurônios Motores/metabolismo , Neurônios/fisiologia , Neurotransmissores/metabolismo , Medula Espinal/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Molecules ; 25(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455792

RESUMO

The inappropriate or excessive use of antimicrobial agents caused an emerging public health problem due to the resulting resistance developed by microbes. Therefore, there is an urgent need to develop effective antimicrobial strategies relying on natural agents with different mechanisms of action. Nature has been known to offer many bioactive compounds, in the form of animal venoms, algae, and plant extracts that were used for decades in traditional medicine. Animal venoms and secretions have been deeply studied for their wealth in pharmaceutically promising molecules. As such, they were reported to exhibit many biological activities of interest, such as antibacterial, antiviral, anticancer, and anti-inflammatory activities. In this review, we summarize recent findings on the antimicrobial activities of crude animal venoms/secretions, and describe the peptides that are responsible of these activities.


Assuntos
Anti-Infecciosos/química , Antivirais/química , Peptídeos/química , Peçonhas/química , Animais , Anti-Infecciosos/uso terapêutico , Antivirais/uso terapêutico , Humanos , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico
11.
Molecules ; 24(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430861

RESUMO

Apitherapy is an alternate therapy that relies on the usage of honeybee products, most importantly bee venom for the treatment of many human diseases. The venom can be introduced into the human body by manual injection or by direct bee stings. Bee venom contains several active molecules such as peptides and enzymes that have advantageous potential in treating inflammation and central nervous system diseases, such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Moreover, bee venom has shown promising benefits against different types of cancer as well as anti-viral activity, even against the challenging human immunodeficiency virus (HIV). Many studies described biological activities of bee venom components and launched preclinical trials to improve the potential use of apitoxin and its constituents as the next generation of drugs. The aim of this review is to summarize the main compounds of bee venom, their primary biological properties, mechanisms of action, and their therapeutic values in alternative therapy strategies.


Assuntos
Venenos de Abelha/química , Venenos de Abelha/farmacologia , Abelhas/química , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico
12.
Molecules ; 23(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360399

RESUMO

Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components possess many pharmacological effects and have been used to design drugs and as biomarkers of diseases. Viperidae is one family of venomous snakes that is found nearly worldwide. However, three main vipers exist in the Middle Eastern region: Montivipera bornmuelleri, Macrovipera lebetina, and Vipera (Daboia) palaestinae. The venoms of these vipers have been the subject of many studies and are considered as a promising source of bioactive molecules. In this review, we present an overview of these three vipers, with a special focus on their venom composition as well as their biological activities, and we discuss further frameworks for the exploration of each venom.


Assuntos
Venenos de Víboras , Viperidae , Animais , Oriente Médio , Venenos de Víboras/química , Venenos de Víboras/uso terapêutico , Viperidae/classificação
13.
Toxicol Rep ; 5: 318-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854600

RESUMO

Beside their toxicity, snake venom components possess several pharmacological effects and have been used to design many drugs. Recently, the cytotoxic, antibacterial, vasorelaxant, pro- and anti-coagulant as well as inflammatory activities of Montivipera bornmuelleri venom have been described in vitro. However, the in vivo effects of this Lebanese snake venom on the immune system has not been established yet. Here, we investigate the immunomodulatory effects of M. bornmuelleri venom on the murine splenic levels of TNF-α, IFN-γ, IL-4, IL-10, IL-1ß and IL-17 at 6 and 24 h post treatment. Different doses of the venom (1 mg/kg, 2 mg/kg, 4 mg/kg and 6 mg/kg) were injected intraperitoneally in BALB/c mice. Using the logit method, LD50 of M. bornmuelleri was proved to be 1.92 mg/kg in our experimental conditions. This study also shows that 1 mg/kg and 2 mg/kg of M. bornmuelleri venom are able to modulate the levels of cytokines in the spleen of mice, as assessed by ELISA. In fact, this snake's venom up-regulates TNF-α, IFN-γ, IL-1ß and IL-17 with a trend in decreasing IL-4 and IL-10. Therefore, by favoring Th1 and Th17 over Th2 and Treg responses, M. bornmuelleri venom might have important clinical implication especially in the field of cancer immunotherapy.

14.
Brain Behav ; 8(8): e00978, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934975

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) comprises a group of neurodevelopmental psychiatric disorders characterized by deficits in social interactions, interpersonal communication, repetitive and stereotyped behaviors and may be associated with intellectual disabilities. The description of ASD as a synaptopathology highlights the importance of the synapse and the implication of ion channels in the etiology of these disorders. METHODS: A narrative and critical review of the relevant papers from 1982 to 2017 known by the authors was conducted. RESULTS: Genome-wide linkages, association studies, and genetic analyses of patients with ASD have led to the identification of several candidate genes and mutations linked to ASD. Many of the candidate genes encode for proteins involved in neuronal development and regulation of synaptic function including ion channels and actors implicated in synapse formation. The involvement of ion channels in ASD is of great interest as they represent attractive therapeutic targets. In agreement with this view, recent findings have shown that drugs modulating ion channel function are effective for the treatment of certain types of patients with ASD. CONCLUSION: This review describes the genetic aspects of ASD with a focus on genes encoding ion channels and highlights the therapeutic implications of ion channels in the treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Canais Iônicos/genética , Terapia de Alvo Molecular , Transmissão Sináptica/efeitos dos fármacos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Estudo de Associação Genômica Ampla , Humanos , Transmissão Sináptica/genética
15.
Mol Biol Cell ; 28(25): 3699-3708, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021340

RESUMO

The ß4 isoform of the ß-subunits of voltage-gated calcium channel regulates cell proliferation and cell cycle progression. Herein we show that coexpression of the ß4-subunit with actors of the canonical Wnt/ß-catenin signaling pathway in a hepatoma cell line inhibits Wnt-responsive gene transcription and decreases cell division, in agreement with the role of the Wnt pathway in cell proliferation. ß4-subunit-mediated inhibition of Wnt signaling is observed in the presence of LiCl, an inhibitor of glycogen synthase kinase (GSK3) that promotes ß-catenin translocation to the nucleus. Expression of ß4-subunit mutants that lost the ability to translocate to the nucleus has no effect on Wnt signaling, suggesting that ß4-subunit inhibition of Wnt signaling occurs downstream from GSK3 and requires targeting of ß4-subunit to the nucleus. ß4-subunit coimmunoprecipitates with the TCF4 transcription factor and overexpression of TCF4 reverses the effect of ß4-subunit on the Wnt pathway. We thus propose that the interaction of nuclear ß4-subunit with TCF4 prevents ß-catenin binding to TCF4 and leads to the inhibition of the Wnt-responsive gene transcription. Thereby, our results show that ß4-subunit is a TCF4 repressor and therefore appears as an interesting candidate for the regulation of this pathway in neurons where ß4-subunit is specifically expressed.


Assuntos
Canais de Cálcio/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Via de Sinalização Wnt , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células CHO , Canais de Cálcio/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cricetulus , Regulação para Baixo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , beta Catenina/fisiologia
16.
Int J Biochem Cell Biol ; 89: 57-70, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28587927

RESUMO

The ß subunits of Voltage-Gated Calcium Channel (VGCC) are cytosolic proteins that interact with the VGCC pore -forming subunit and participate in the trafficking of the channel to the cell membrane and in ion influx regulation. ß subunits also exert functions independently of their binding to VGCC by translocation to the cell nucleus including the control of gene expression. Mutations of the neuronal Cacnb4 (ß4) subunit are linked to human neuropsychiatric disorders including epilepsy and intellectual disabilities. It is believed that the pathogenic phenotype induced by these mutations is associated with channel-independent functions of the ß4 subunit. In this report, we investigated the role of ß4 subunit in cell proliferation and cell cycle progression and examined whether these functions could be altered by a pathogenic mutation. To this end, stably transfected Chinese Hamster Ovary (CHO-K1) cells expressing either rat full-length ß4 or the rat C-terminally truncated epileptic mutant variant ß1-481 were generated. The subcellular localization of both proteins differed significantly. Full-length ß4 localizes almost exclusively in the cell nucleus and concentrates into the nucleolar compartment, while the C-terminal-truncated ß1-481 subunit was less concentrated within the nucleus and absent from the nucleoli. Cell proliferation was found to be reduced by the expression of ß4, while it was unaffected by the epileptic mutant. Also, full-length ß4 interfered with cell cycle progression by presumably preventing cells from entering the S-phase via a mechanism that partially involves endogenous B56δ, a regulatory subunit of the phosphatase 2A (PP2A) that binds ß4 but not ß1-481. Analysis of ß4 subcellular distribution during the cell cycle revealed that the protein is highly expressed in the nucleus at the G1/S transition phase and that it is translocated out of the nucleus during chromatin condensation and cell division. These results suggest that nuclear accumulation of ß4 at the G1/S transition phase affects the progression into S-phase resulting in a decrease in the rate of cell proliferation. Regulation of the cell cycle exit is a critical step in determining the number of neuronal precursors and neuronal differentiation suggesting that mutations of the ß4 subunit could affect neural development and formation of the mature central nervous system.


Assuntos
Canais de Cálcio/metabolismo , Animais , Células CHO , Canais de Cálcio/genética , Ciclo Celular , Nucléolo Celular/metabolismo , Proliferação de Células , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Camundongos , Mutação , Transporte Proteico
17.
Biochem J ; 473(13): 1831-44, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27354560

RESUMO

Calcium plays a key role in cell signalling by its intervention in a wide range of physiological processes. Its entry into cells occurs mainly via voltage-gated calcium channels (VGCC), which are found not only in the plasma membrane of excitable cells but also in cells insensitive to electrical signals. VGCC are composed of different subunits, α1, ß, α2δ and γ, among which the cytosolic ß subunit (Cavß) controls the trafficking of the channel to the plasma membrane, its regulation and its gating properties. For many years, these were the main functions associated with Cavß. However, a growing number of proteins have been found to interact with Cavß, emphasizing the multifunctional role of this versatile protein. Interestingly, some of the newly assigned functions of Cavß are independent of its role in the regulation of VGCC, and thus further increase its functional roles. Based on the identity of Cavß protein partners, this review emphasizes the diverse cellular functions of Cavß and summarizes both past findings as well as recent progress in the understanding of VGCC.


Assuntos
Canais de Cálcio/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Membrana Celular/metabolismo , Humanos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
18.
Infect Disord Drug Targets ; 13(5): 337-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24712674

RESUMO

The L-amino acid oxidase (LAAO) is a multifunctional enzyme, able to partake in different activities including antibacterial activity. In this study, a novel LAAO (Mb-LAAO) was isolated from the venom of M. bornmuelleri snake using size exclusion chromatography followed by RP-HPLC and partially characterized. However, the molecular weight of the Mb-LAAO determined by ESI-MS and SDS-PAGE was 59 960.4 Da. Once the enzymatic activity test confirming the enzyme's identity (transformation of L-leucine) was done, the Mb-LAAO was evaluated for its antibacterial activity against Gram-negative bacteria. It showed a remarkable effect against M. morganii and K. pneumoniae. Moreover, no cytotoxic activity was observed for Mb-LAAO against human erythrocytes arguing for an exploration of its pharmaceutical interest.


Assuntos
Antibacterianos/farmacologia , L-Aminoácido Oxidase/farmacologia , Venenos de Víboras/enzimologia , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/toxicidade , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , L-Aminoácido Oxidase/isolamento & purificação , L-Aminoácido Oxidase/toxicidade , Líbano , Peso Molecular , Espectrometria de Massas por Ionização por Electrospray , Viperidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...