Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Med Case Rep J ; 16: 513-520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701537

RESUMO

Aim: Large bone defects in patients with chronic deep periprosthetic knee infection is a major problem. It is widely accepted that bone defects filling with polymethylmethacrylate (PMMA) cement could be used only in selected cases of small bone defects (up to 5 mm) and less than 50% of articular surface due to multiple reasons: risk of thermal bone damage, inadequate cement pressurization and bone cement shrinkage, etc. Staged cementing for preventing bone heating and over negative effects of cementing on a thick layer of bone cement has limited support in the literature. Case Presentation: We present the case of 4.5 years follow up after temporary-permanent spacer implantation in a 63-year-old male with chronic deep knee PJI and tibial AORI type 3 bone defect reconstructed via double cementing method. Results: Method of double (staged) cementing used for reconstruction of epiphyseal tibial bone defect in a patient with fistula form of knee PJI shows excellent clinical results at 4.5 years follow up.

2.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765611

RESUMO

Antibiotic-loaded bone cement (ALBC) has become an indispensable material in orthopedic surgery in recent decades, owing to the possibility of drugs delivery to the surgical site. It is applied for both infection prophylaxis (e.g., in primary joint arthroplasty) and infection treatment (e.g., in periprosthetic infection). However, the introduction of antibiotic to the polymer matrix diminishes the mechanical strength of the latter. Moreover, the majority of the loaded antibiotic remains embedded in polymer and does not participate in drug elution. Incorporation of the various additives to ALBC can help to overcome these issues. In this paper, four different natural micro/nanoscale materials (halloysite, nanocrystalline cellulose, micro- and nanofibrillated cellulose) were tested as additives to commercial Simplex P bone cement preloaded with vancomycin. The influence of all four materials on the polymerization process was comprehensively studied, including the investigation of the maximum temperature of polymerization, setting time, and monomer leaching. The introduction of the natural additives led to a considerable enhancement of drug elution and microhardness in the composite bone cements compared to ALBC. The best combination of the polymerization rate, monomer leaching, antibiotic release, and microhardness was observed for the sample containing nanofibrillated cellulose (NFC).

3.
Biomedicines ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37371824

RESUMO

This research aimed to assess the effect of bone allograft combined with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (Zol) on bone formation. A total of 96 rabbits were used, and femoral bone defects (5 mm) were created. The rabbits were divided into four groups: (1) bone allograft with PRP (AG + PRP), (2) bone allograft with rhBMP-2 5 µg (AG + BMP-2), (3) bone allograft with Zol 5 µg (AG + Zol), and (4) bone allograft (AG). A histopathological examination was performed to evaluate bone defect healing after 14, 30, and 60 days. The new bone formation and neovascularization inside the bone allograft was significantly greater in the AG + PRP group compared to AG and AG + Zol groups after 14 and 30 days (p < 0.001). The use of bone allograft with rhBMP-2 induced higher bone formation compared to AG and AG + Zol groups on days 14 and 30 (p < 0.001), but excessive osteoclast activity was observed on day 60. The local co-administration of Zol with a heat-treated allograft inhibits allograft resorption as well as new bone formation at all periods. In conclusion, this study demonstrated that PRP and rhBMP-2, combined with a Marburg bone allograft, can significantly promote bone formation in the early stage of bone defect healing.

4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047808

RESUMO

Barrier membranes are an essential tool in guided bone Regeneration (GBR), which have been widely presumed to have a bioactive effect that is beyond their occluding and space maintenance functionalities. A standardized calvaria implantation model was applied for 2, 8, and 16 weeks on Wistar rats to test the interactions between the barrier membrane and the underlying bone defects which were filled with bovine bone substitute materials (BSM). In an effort to understand the barrier membrane's bioactivity, deeper histochemical analyses, as well as the immunohistochemical detection of macrophage subtypes (M1/M2) and vascular endothelial cells, were conducted and combined with histomorphometric and statistical approaches. The native collagen-based membrane was found to have ossified due to its potentially osteoconductive and osteogenic properties, forming a "bony shield" overlying the bone defects. Histomorphometrical evaluation revealed the resorption of the membranes and their substitution with bone matrix. The numbers of both M1- and M2-macrophages were significantly higher within the membrane compartments compared to the underlying bone defects. Thereby, M2-macrophages significantly dominated the tissue reaction within the membrane compartments. Statistically, a correlation between M2-macropahges and bone regeneration was only found at 2 weeks post implantationem, while the pro-inflammatory limb of the immune response correlated with the two processes at 8 weeks. Altogether, this study elaborates on the increasingly described correlations between barrier membranes and the underlying bone regeneration, which sheds a light on the understanding of the immunomodulatory features of biomaterials.


Assuntos
Regeneração Tecidual Guiada , Osteogênese , Ratos , Animais , Bovinos , Células Endoteliais , Ratos Wistar , Colágeno/química , Regeneração Óssea , Materiais Biocompatíveis/química , Membranas Artificiais
5.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769326

RESUMO

Cytocompatibility analyses of new implant materials or biomaterials are not only prescribed by the Medical Device Regulation (MDR), as defined in the DIN ISO Norm 10993-5 and -12, but are also increasingly replacing animal testing. In this context, jellyfish collagen has already been established as an alternative to mammalian collagen in different cell culture conditions, but a lack of knowledge exists about its applicability for cytocompatibility analyses of biomaterials. Thus, the present study was conducted to compare well plates coated with collagen type 0 derived from Rhizostoma pulmo with plates coated with bovine and porcine collagen. The coated well plates were analysed in vitro for their cytocompatibility, according to EN ISO 10993-5/-12, using both L929 fibroblasts and MC3T3 pre-osteoblasts. Thereby, the coated well plates were compared, using established materials as positive controls and a cytotoxic material, RM-A, as a negative control. L929 cells exhibited a significantly higher viability (#### p < 0.0001), proliferation (## p < 0.01), and a lower cytotoxicity (## p < 0.01 and # p < 0.05)) in the Jellagen® group compared to the bovine and porcine collagen groups. MC3T3 cells showed similar viability and acceptable proliferation and cytotoxicity in all collagen groups. The results of the present study revealed that the coating of well plates with collagen Type 0 derived from R. pulmo leads to comparable results to the case of well plates coated with mammalian collagens. Therefore, it is fully suitable for the in vitro analyses of the cytocompatibility of biomaterials or medical devices.


Assuntos
Cnidários , Cifozoários , Animais , Bovinos , Materiais Biocompatíveis/farmacologia , Colágeno , Linhagem Celular , Mamíferos
6.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499315

RESUMO

Guided bone regeneration (GBR) has become a clinically standard modality for the treatment of localized jawbone defects. Barrier membranes play an important role in this process by preventing soft tissue invasion outgoing from the mucosa and creating an underlying space to support bone growth. Different membrane types provide different biological mechanisms due to their different origins, preparation methods and structures. Among them, collagen membranes have attracted great interest due to their excellent biological properties and desired bone regeneration results to non-absorbable membranes even without a second surgery for removal. This work provides a comparative summary of common barrier membranes used in GBR, focusing on recent advances in collagen membranes and their biological mechanisms. In conclusion, the review article highlights the biological and regenerative properties of currently available barrier membranes with a particular focus on bioresorbable collagen-based materials. In addition, the advantages and disadvantages of these biomaterials are highlighted, and possible improvements for future material developments are summarized.


Assuntos
Regeneração Tecidual Guiada Periodontal , Regeneração Tecidual Guiada , Regeneração Tecidual Guiada Periodontal/métodos , Membranas Artificiais , Regeneração Óssea , Colágeno , Materiais Biocompatíveis , Politetrafluoretileno
7.
In Vivo ; 36(5): 2149-2165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36099113

RESUMO

BACKGROUND: Bioglass is a highly adoptable bone substitute material which can be combined with so-called therapeutic ions. However, knowledge is poor regarding the influence of therapeutic ions on immune reactions and associated bone healing. Thus, the aim of this work was to investigate the influence of strontium- and copper-doped bioglass on the induction of M1 and M2 macrophages, as well as vascularization. MATERIALS AND METHODS: Two types of alkali glass were produced based on ICIE16 bioglass via the melt-quench method with the addition of 5 wt% copper or strontium (ICIE16-Cu and ICIE16-Sr). Pure ICIE16 and 45S5 bioglass were used as control materials. The ion release and chemical composition of the bioglass were investigated, and an in vivo experiment was subcutaneously performed on Sprague-Dawley rats. RESULTS: Scanning electron microscopy revealed significant differences in the surface morphology of the bioglass materials. Energy dispersive X-ray spectroscopy confirmed the efficiency of the doping process by showing the ion-release kinetics. ICIE16-Cu exhibited a higher ion release than ICIE16-Sr. ICIE16-Cu induced low immune cell migration and triggered not only a low number of M1 and M2 macrophages but also of blood vessels. ICIE16-Sr induced higher numbers of M1 macrophages after 30 days. Both bioglass types induced numbers of M2 macrophages comparable with those found in the control groups. CONCLUSION: Bioglass doping with copper and strontium did not significantly influence the foreign body response nor vascularization of the implantation bed in vivo. However, all the studied bioglass materials seemed to be biocompatible.


Assuntos
Cobre , Estrôncio , Animais , Cerâmica , Cobre/farmacologia , Imunidade , Íons , Ratos , Ratos Sprague-Dawley , Estrôncio/farmacologia
8.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142541

RESUMO

Although various studies have investigated differences in the tissue reaction pattern to synthetic and xenogeneic bone substitute materials (BSMs), a lack of knowledge exists regarding the classification of both materials based on the DIN ISO 10993-6 scoring system, as well as the histomorphometrical measurement of macrophage subtypes within their implantation beds. Thus, the present study was conducted to analyze in vivo responses to both xenogeneic and synthetic bone substitute granules. A standardized calvaria implantation model in Wistar rats, in combination with established scoring, histological, histopathological, and histomorphometrical methods, was conducted to analyze the influence of both biomaterials on bone regeneration and the immune response. The results showed that the application of the synthetic BSM maxresorb® induced a higher pro-inflammatory tissue response, while the xenogeneic BSM cerabone® induced a higher anti-inflammatory reaction. Additionally, comparable bone regeneration amounts were found in both study groups. Histopathological scoring revealed that the synthetic BSM exhibited non-irritant scores at all timepoints using the xenogeneic BSM as control. Overall, the results demonstrated the biocompatibility of synthetic BSM maxresorb® and support the conclusion that this material class is a suitable alternative to natural BSM, such as the analyzed xenogeneic material cerabone®, for a broad range of indications.


Assuntos
Substitutos Ósseos , Animais , Anti-Inflamatórios , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio , Hidroxiapatitas , Imunidade , Ratos , Ratos Wistar
9.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35884224

RESUMO

Background: Antibiotics delivered from implanted bone substitute materials (BSM) can potentially be used to prevent acute infections and biofilm formation, providing high concentrations of antibiotics at the surgical site without systemic toxicity. In addition, BSM should allow osteoconductivity supporting bone healing without further surgery. Promising results have been achieved using lyophilized bone allografts mixed with antibiotics. Methods: In this study specially prepared human bone allografts were evaluated as an antibiotic carrier in vitro and in vivo. The efficacy of different antibiotic-impregnated bone allografts was measured by drug release tests in vitro and in vivo and bacterial susceptibility tests using four bacterial species usually responsible for implant-associated infections. Results: The loading procedures of allograft bone substitutes with antibiotics were successful. Some of the antibiotic concentrations exceeded the MIC90 for up to 7 days in vitro and for up to 72 h in vivo. The susceptibility tests showed that S. epidermidis ATCC 12228 was the most susceptible bacterial species in comparison to the other strains tested for all antibiotic substances. Vancomycin and rifampicin showed the best results against standard and patient-isolated strains in vitro. In vivo, new bone formation was comparable in all study groups including the control group without antibiotic loading. Conclusions: Human bone allografts showed the capacity to act as customized loaded antibiotic carriers to prevent acute infections and should be considered in the management of bone infections in combination with systemic antimicrobial therapy.

10.
Polymers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458267

RESUMO

The current environmental problems require the use of low-energy, environmentally friendly methods and nature-like technologies for the creation of materials. In this work, we aim to study the possibility of the direct biotransformation of fibrillar cellulose by fungi through obtaining a cellulose/mycelium-based biocomposite. The cellulose micro- and nanofibrils were used as the main carbon sources in the solid-phase cultivation of basidiomycete Trametes hirsuta. The cellulose fibrils in this process act as a template for growing mycelium with the formation of well-developed net structure. The biotransformation dynamics of cellulose fibrils were studied with the help of scanning electron microscopy. The appearance of nitrogen in the structure of formed fibers was revealed by elemental analysis and FTIR-spectroscopy. The fibers diameters were estimated based on micrograph analysis and the laser diffraction method. It was shown that the diameter of cellulose fibrils can be tuned by fungi through obtaining cellulose-based mycelium fibers with a narrower diameter-size distribution as compared to the pristine cellulose fibrils. The morphology of the resulting mycelium differed when the micro or nanofibrils were used as a substrate.

11.
Int J Artif Organs ; 41(11): 789-800, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29707988

RESUMO

Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone®) and non-sintered (Bio-Oss®) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.


Assuntos
Regeneração Óssea/fisiologia , Substitutos Ósseos , Hidroxiapatitas , Minerais , Cicatrização/fisiologia , Animais , Produtos Biológicos , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...