Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400642, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647258

RESUMO

Kidney stones are a pervasive disease with notoriously high recurrence rates that require more effective treatment strategies. Herein, tartronic acid is introduced as an efficient inhibitor of calcium oxalate monohydrate (COM) crystallization, which is the most prevalent constituent of human kidney stones. A combination of in situ experimental techniques and simulations are employed to compare the inhibitory effects of tartronic acid with those of its molecular analogs. Tartronic acid exhibits an affinity for binding to rapidly growing apical surfaces of COM crystals, thus setting it apart from other inhibitors such as citric acid, the current preventative treatment for kidney stones. Bulk crystallization and in situ atomic force microscopy (AFM) measurements confirm the mechanism by which tartronic acid interacts with COM crystal surfaces and inhibits growth. These findings are consistent with in vivo studies that reveal the efficacy of tartronic acid is similar to that of citric acid in mouse models of hyperoxaluria regarding their inhibitory effect on stone formation and alleviating stone-related physical harm. In summary, these findings highlight the potential of tartronic acid as a promising alternative to citric acid for the management of calcium oxalate nephropathies, offering a new option for clinical intervention in cases of kidney stones.

2.
Chem Rev ; 124(6): 3416-3493, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484327

RESUMO

Zeolite catalysts and adsorbents have been an integral part of many commercial processes and are projected to play a significant role in emerging technologies to address the changing energy and environmental landscapes. The ability to rationally design zeolites with tailored properties relies on a fundamental understanding of crystallization pathways to strategically manipulate processes of nucleation and growth. The complexity of zeolite growth media engenders a diversity of crystallization mechanisms that can manifest at different synthesis stages. In this review, we discuss the current understanding of classical and nonclassical pathways associated with the formation of (alumino)silicate zeolites. We begin with a brief overview of zeolite history and seminal advancements, followed by a comprehensive discussion of different classes of zeolite precursors with respect to their methods of assembly and physicochemical properties. The following two sections provide detailed discussions of nucleation and growth pathways wherein we emphasize general trends and highlight specific observations for select zeolite framework types. We then close with conclusions and future outlook to summarize key hypotheses, current knowledge gaps, and potential opportunities to guide zeolite synthesis toward a more exact science.

3.
Small ; : e2308166, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321841

RESUMO

The formation mechanism(s) of high-index facets in metal oxides is not widely understood but remains a topic of interest owing to the challenges of stabilizing high-energy surfaces. These metal oxide crystal surfaces are expected to provide unique physicochemical characteristics; therefore, understanding crystallization pathways may enable the rational design of materials with controlled properties. Here the crystallization of NiO via thermal decomposition of a nickel source in excess of alkali chlorides is examined, focusing on KCl, which produces trapezohedral NiO (311) particles that are difficult to achieve through alternative methods. Trapezohedral NiO crystals are confirmed to grow via a molten eutectic where NiO nucleation is followed by nonclassical crystallization through processes resembling colloidal assembly. Aggregates comprised of NiO nanocrystals form mesostructures that ripen with heating time and exhibit fewer grain boundaries as they transition into single-crystalline particles. At temperatures higher than those of NiO crystallization, there is a restructuring of (311) facets into microfacets exposing (111) and (100) surfaces. These findings illustrate the complex crystallization processes taking place during molten salt synthesis. The ability to generate metal oxide particles with high-index facets has the potential to be a more generalized approach to unlock the physicochemical properties of materials for diverse applications.

4.
Chem Sci ; 15(2): 573-583, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179517

RESUMO

Chabazite (CHA type) zeolite is notoriously difficult to synthesize in the absence of organic structure-directing agents owing to long synthesis times and/or impurity formation. The ability to tailor organic-free syntheses of zeolites is additionally challenging due to the lack of molecular level understanding of zeolite nucleation and growth pathways, particularly the role of inorganic cations. In this study, we reveal that zeolite CHA can be synthesized using six different combinations of inorganic cations, including the first reported seed- and organic-free synthesis without the presence of potassium. We show that lithium, when present in small quantities, is an effective accelerant of CHA crystallization; and that ion pairings can markedly reduce synthesis times and temperatures, while expanding the design space of zeolite CHA formation in comparison to conventional methods utilizing potassium as the sole structure-directing agent. Herein, we posit the effects of cation pairings on zeolite CHA crystallization are related to their hydrated ionic radii. We also emphasize the broader implications for considering the solvated structure and cooperative role of inorganic cations in zeolite synthesis within the context of the reported findings for chabazite.

5.
Commun Biol ; 6(1): 783, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500754

RESUMO

Hematin crystallization is an essential element of heme detoxification of malaria parasites and its inhibition by antimalarial drugs is a common treatment avenue. We demonstrate at biomimetic conditions in vitro irreversible inhibition of hematin crystal growth due to distinct cooperative mechanisms that activate at high crystallization driving forces. The evolution of crystal shape after limited-time exposure to both artemisinin metabolites and quinoline-class antimalarials indicates that crystal growth remains suppressed after the artemisinin metabolites and the drugs are purged from the solution. Treating malaria parasites with the same agents reveals that three- and six-hour inhibitor pulses inhibit parasite growth with efficacy comparable to that of inhibitor exposure during the entire parasite lifetime. Time-resolved in situ atomic force microscopy (AFM), complemented by light scattering, reveals two molecular-level mechanisms of inhibitor action that prevent ß-hematin growth recovery. Hematin adducts of artemisinins incite copious nucleation of nonextendable nanocrystals, which incorporate into larger growing crystals, whereas pyronaridine, a quinoline-class drug, promotes step bunches, which evolve to engender abundant dislocations. Both incorporated crystals and dislocations are known to induce lattice strain, which persists and permanently impedes crystal growth. Nucleation, step bunching, and other cooperative behaviors can be amplified or curtailed as means to control crystal sizes, size distributions, aspect ratios, and other properties essential for numerous fields that rely on crystalline materials.


Assuntos
Antimaláricos , Malária , Quinolinas , Humanos , Hemina/metabolismo , Cristalização , Antimaláricos/farmacologia , Antimaláricos/química , Quinolinas/farmacologia
6.
RSC Adv ; 13(4): 2202-2212, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741142

RESUMO

Long-term catheterised individuals are at significant risk of developing catheter-associated urinary tract infections (CAUTIs), with up to 50% of patients experiencing recurrent episodes of catheter encrustation and blockage. Catheter blockage is a result of accumulation of carbonate apatite and struvite formed upon precipitation of ions within urine due to an infection-induced rise in pH. The aim of this study was to investigate the antimicrobial and anti-encrustation activities of tetrasodium ethylenediaminetetraacetic acid (tEDTA) to evaluate its potential efficacy in preventing CAUTIs and catheter blockages. The antimicrobial activity of tEDTA against uropathogens was assessed using time kill assays performed in artificial urine (AU). Crystallisation studies and in vitro bladder model assays were conducted to investigate the effect of tEDTA on struvite crystallisation and catheter blockage. tEDTA displayed bacteriostatic activity against Proteus mirabilis and prevented precipitation of ions in the AU. Crystallisation studies confirmed tEDTA inhibits struvite nucleation and growth via Mg2+ chelation with 7.63 mM tEDTA, equimolar to the concentration of divalent cations in AU, preventing the formation of crystalline deposits and blockage of Foley catheters for ≥168 h. The promising chelating abilities of low tEDTA concentrations could be exploited to inhibit encrustation and blockage of indwelling catheters. The fundamental research presented will inform our future development of an effective tEDTA-eluting catheter coating aimed at preventing catheter encrustation.

7.
Nat Commun ; 14(1): 561, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732334

RESUMO

Modifiers are commonly used in natural, biological, and synthetic crystallization to tailor the growth of diverse materials. Here, we identify tautomers as a new class of modifiers where the dynamic interconversion between solute and its corresponding tautomer(s) produces native crystal growth inhibitors. The macroscopic and microscopic effects imposed by inhibitor-crystal interactions reveal dual mechanisms of inhibition where tautomer occlusion within crystals that leads to natural bending, tunes elastic modulus, and selectively alters the rate of crystal dissolution. Our study focuses on ammonium urate crystallization and shows that the keto-enol form of urate, which exists as a minor tautomer, is a potent inhibitor that nearly suppresses crystal growth at select solution alkalinity and supersaturation. The generalizability of this phenomenon is demonstrated for two additional tautomers with relevance to biological systems and pharmaceuticals. These findings offer potential routes in crystal engineering to strategically control the mechanical or physicochemical properties of tautomeric materials.

8.
Dalton Trans ; 52(5): 1301-1315, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36625388

RESUMO

The mechanisms of many zeolitic processes, including nucleation and interzeolite transformation, are not fully understood owing to complex growth mixtures that obfuscate in situ monitoring of molecular events. In this work, we provide insights into zeolite chemistry by investigating the formation thermodynamics of small zeolitic species using first principles calculations. We systematically study how formation energies of pure-silicate and aluminosilicate species differ by structure type and size, temperature, and the presence of alkali or alkaline earth metal cations (Na+, K+, and Ca2+). Highly condensed (cage-like) species are found to be strongly preferred to simple rings in the pure-silicate system, and this thermodynamic preference increases with temperature. Introducing aluminum leads to more favorable formation thermodynamics for all species. Moreover, for species with a low Si/Al ratio (≤2), a thermodynamic preference does not exist among structure types; instead, a pool of diverse aluminosilicate structures compete in formation. Metal cation effects strongly depend on the presence of aluminum, cage size, cation type, and location, since each of these factors can alter electrostatic interactions between cations and zeolitic species. We reveal that confined metal cations may destabilize pure-silicate cages due to localized interactions; conversely, they stabilize aluminosilicates due to strong cation-framework attractions in sufficiently large cages. Importantly, this work rationalizes a series of experimental observations and can potentially guide efforts for controlling zeolite nucleation/crystallization processes.

9.
J Am Chem Soc ; 145(2): 1155-1164, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36603155

RESUMO

Zeolite crystallization occurs by complex processes involving a variety of possible mechanisms. The sol gel media used to prepare zeolites leads to heterogeneous mixtures of solution and solid states with diverse solute species. At later stages of zeolite synthesis when growth occurs predominantly from solution, classical two-dimensional nucleation and spreading of layers on crystal surfaces via the addition of soluble species is the dominant pathway. At earlier stages, these processes occur in parallel with nonclassical pathways involving crystallization by particle attachment (CPA). The relative roles of solution- and solid-state species in zeolite crystallization have been a subject of debate. Here, we investigate the growth mechanism of a commercially relevant zeolite, faujasite (FAU). In situ atomic force microscopy (AFM) measurements reveal that supernatant solutions extracted from a conventional FAU synthesis at various times do not result in growth, indicating that FAU growth predominantly occurs from the solid state through a disorder-to-order transition of amorphous precursors. Elemental analysis shows that supernatant solutions are significantly more siliceous than both the original growth mixture and the FAU zeolite product; however, in situ AFM studies using a dilute clear solution with a lower Si/Al ratio revealed three-dimensional growth of surfaces that is distinct from layer-by-layer and CPA pathways. This unique mechanism of growth differs from those observed in studies of other zeolites. Given that relatively few zeolite frameworks have been the subject of mechanistic investigation by in situ techniques, these observations of FAU crystallization raise the question whether its growth pathway is characteristic of other zeolite structures.


Assuntos
Zeolitas , Zeolitas/química , Cristalização/métodos
10.
JACS Au ; 2(10): 2295-2306, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36311839

RESUMO

The preparation of metastable zeolites is often restricted to a limited range of synthesis conditions, which is exemplified in commercial syntheses lacking organics to stabilize the crystal structure. In the absence of an organic structure-directing agent, interzeolite transformation is a common phenomenon that can lead to undesirable products or impurities. Many studies have investigated the substitution of Si and Al in zeolite frameworks with alternative elements (heteroatoms) as a means of tailoring the properties of zeolites; however, relatively few studies have systematically explored the impact of heteroatoms on interzeolite transformations and their concomitant effects on zeolite crystallization. In this study, we examine methods to prepare isostructures of faujasite (FAU), which is one of the most commercially relevant zeolites and also a thermodynamically metastable structure. A survey of multivalent elements revealed that zinc is capable of stabilizing FAU at high temperatures and inhibiting its frequent transformation to zeolite gismondine (GIS). Using combined experimental and computational studies, we show that zinc alters the chemical nature of growth mixtures by sequestering silicates. Zinc heteroatoms incorporate in the FAU framework with a loading-dependent coordination. Our collective findings provide an improved understanding of driving forces for the FAU-to-GIS interzeolite transformation where we observe that heteroatoms (e.g., zinc) can stabilize zeolite FAU over a broad range of synthesis conditions. Given the growing interest in heteroatom-substituted zeolites, this approach to preparing zinc-containing FAU may prove applicable to a broader range of zeolite structures.

11.
Adv Mater ; 34(49): e2205885, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125846

RESUMO

The synthesis of zeolites with nano-sized dimensions is often limited to a narrow design space that conventionally relies upon the design of organics to direct hierarchical materials. Here, it is demonstrated that the addition of an inorganic modifier, germanium oxide (GeO2 ), to a zeolite growth mixture directs the formation of crystals with ultrasmall dimensions. This effect is observed for zeolites ZSM-11 and ZSM-5 over a range of synthesis conditions wherein the role of GeO2  in zeolite crystallization deviates from its typical function as a heteroatom. Notably, the final products contain trace amounts of Ge, which indicates the inorganic modifier does not compete for sites in the zeolite framework based on its formation of a discrete phase that enables GeO2  recovery. Catalytic tests using the methanol-to-hydrocarbons reaction reveal significant enhancement in the performance of zeolite catalysts prepared with GeO2  compared to reported examples of nano-sized zeolites. These findings highlight a potentially generalizable and commercially viable synthesis method to reduce mass-transport limitations in zeolites for diverse applications.

12.
Angew Chem Int Ed Engl ; 61(41): e202210434, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947114

RESUMO

We report a method to prepare core-shell zeolite beta (*BEA) with an aluminous core and an epitaxial Si-rich shell. This method capitalizes on the inherent defects in *BEA crystals to simultaneously passivate acid sites on external surfaces and increase intracrystalline mesoporosity through facile post-hydrothermal synthesis modification in alkaline media. This process creates more hydrophobic materials by reducing silanol defects and enriching the shell in silica via a combination of dealumination and the relocation of silica from the core to the shell during intracrystalline mesopore formation. The catalytic consequences of *BEA core-shells relative to conventional analogues were tested using the biomass conversion of levulinic acid and n-butanol to n-butyl levulinate as a benchmark reaction. Our findings reveal that siliceous shells and intracrystalline mesopores synergistically enhance the performance of *BEA catalysts.

14.
J Am Chem Soc ; 144(17): 7861-7870, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442020

RESUMO

Identifying zeolite catalysts that can simultaneously optimize p-xylene selectivity and feed utilization is critical to toluene alkylation with methanol (TAM). Here, we show that zeolite MCM-22 (MWW) has an exceptional catalyst lifetime in the TAM reaction at high operating pressure, conversion, and selectivity. We systematically probe the catalytic behavior of active sites in distinct topological features of MCM-22, revealing that high p-xylene yield and catalyst stability are predominantly attributed to sinusoidal channels and supercages, respectively. Using a combination of catalyst design and testing, density functional theory, and molecular dynamics simulations, we propose a spatiotemporal coke coupling phenomenon to explain a multistage p-xylene selectivity profile wherein the formation of light coke in supercages initiates the deactivation of unselective external surface sites. Our findings indicate that the specific nature of coke is critical to catalyst performance. Moreover, they provide unprecedented insight into the synchronous roles of distinct topological features giving rise to the exceptional stability and selectivity of MCM-22 in the TAM reaction.


Assuntos
Coque , Zeolitas , Catálise , Metanol , Tolueno/química , Xilenos , Zeolitas/química
15.
Faraday Discuss ; 235(0): 322-342, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35411361

RESUMO

Crystallization in media comprised of amorphous precursors is becoming a more common phenomenon for numerous synthetic, biological, and natural materials that grow by a combination of classical and nonclassical pathways. Amorphous phases can exhibit a wide range of physicochemical properties that may evolve during the course of nucleation and crystal growth. This creates challenges for establishing causal relationships between amorphous precursor properties and their effect(s) on the selection of mechanistic pathways of crystallization and ultimately the properties of the crystalline product. In this study, we examine ways to manipulate the composition and colloidal stability of amorphous (alumino)silicate precursors that are prevalent in nanoporous zeolite syntheses. Changes in the amorphous precursor properties are evaluated on the basis of their ability to enhance rates of crystal formation. Here, we use fumed silica as the primary silicon source and examine the effects of infusing the source or growth medium with additional alkali metal, which serves as an inorganic structure-directing agent to facilitate the formation of porous crystal structures. We also assess the impact of adding a polymer additive, which reduces the colloidal stability of precursors, wherein we posit that the confined pockets of solution within the interstitial spaces of the precursor aggregates play an important role in regulating the rate of zeolite crystallization. Three commercially relevant zeolites (mordenite, SSZ-13, and ZSM-5) were selected for this study based on their diverse frameworks and methods of preparation. Our findings reveal that alkali infusion significantly reduces the crystallization times for mordenite and SSZ-13, but has little impact on ZSM-5 synthesis. Conversely, we find that polymer addition markedly enhanced the rates of crystallization among all three zeolites, suggesting that this method may be a general approach to reduce zeolite synthesis times. Given the relatively high costs associated with commercial zeolite production, identifying new methods to improve the efficiency of hydrothermal syntheses can have significant practical implications beyond the fundamental benefits of developing new routes to tailor nonclassical crystallization.


Assuntos
Zeolitas , Cristalização , Polímeros , Porosidade , Dióxido de Silício , Zeolitas/química
16.
Angew Chem Int Ed Engl ; 61(16): e202117742, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138688

RESUMO

Tailoring processes of nucleation and growth to achieve desired material properties is a pervasive challenge in synthetic crystallization. In systems where crystals form via nonclassical pathways, engineering materials often requires the controlled assembly and structural evolution of colloidal precursors. In this study, we examine zeolite SSZ-13 crystallization and show that several polyquaternary amines function as efficient accelerants of nucleation, and, in selected cases, tune crystal size by orders of magnitude. Among the additives tested, polydiallyldimethylammonium (PDDA) was found to have the most pronounced impact on the kinetics of SSZ-13 formation, leading to a 4-fold reduction in crystallization time. Our findings also reveal that enhanced nucleation occurs at an optimal PDDA concentration where a combination of light-scattering techniques demonstrate these conditions lead to polymer-induced aggregation of amorphous precursors and the promotion of (alumino)silicate precipitation from the growth solution. Here, we show that relatively low concentrations of polymer additives can be used in unique ways to dramatically enhance SSZ-13 crystallization rates, thereby improving the overall efficiency of zeolite synthesis.

17.
Angew Chem Int Ed Engl ; 61(8): e202113077, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34877748

RESUMO

Designing zeolite catalysts with improved mass transport properties is crucial for restrictive networks of either one- or two-dimensional pore topologies. Here, we demonstrate the synthesis of finned ferrierite (FER), a commercial zeolite with two-dimensional pores, where protrusions on crystal surfaces behave as pseudo nanoparticles. Catalytic tests of 1-butene isomerization reveal a 3-fold enhancement of catalyst lifetime and an increase of 12 % selectivity to isobutene for finned samples compared to corresponding seeds. Electron tomography was used to confirm the identical crystallographic registry of fins and seeds. Time-resolved titration of Brønsted acid sites confirmed the improved mass transport properties of finned ferrierite compared to conventional analogues. These findings highlight the advantages of introducing fins through facile and tunable post-synthesis modification to impart material properties that are otherwise unattainable by conventional synthesis methods.

18.
J Am Chem Soc ; 143(51): 21446-21460, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34914871

RESUMO

A core objective of synthesizing zeolites for widespread applications is to produce materials with properties and corresponding performances that exceed conventional counterparts. This places an impetus on elucidating and controlling processes of crystallization where one of the most critical design criteria is the ability to prepare zeolite crystals with ultrasmall dimensions to mitigate the deleterious effects of mass transport limitations. At the most fundamental level, this requires a comprehensive understanding of nucleation to address this ubiquitous materials gap. This Perspective highlights recent methodologies to alter zeolite nucleation by using seed-assisted protocols and the exploitation of interzeolite transformations to design advanced materials. Introduction of crystalline seeds in complex growth media used to synthesize zeolites can have wide-ranging effects on the physicochemical properties of the final product. Here we discuss the diverse pathways of zeolite nucleation, recent breakthroughs in seed-assisted syntheses of nanosized and hierarchical materials, and shortcomings for developing generalized guidelines to predict synthesis outcomes. We offer a critical analysis of state-of-the-art approaches to tailor zeolite crystallization wherein we conceptualize whether parallels between network theory and zeolite synthesis can be instrumental for translating key findings of individual discoveries across a broader set of zeolite crystal structures and/or synthesis conditions.

19.
Phys Chem Chem Phys ; 23(34): 18610-18617, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612398

RESUMO

Interactions between organic molecules and inorganic materials are ubiquitous in many applications and often play significant roles in directing pathways of crystallization. It is frequently debated whether kinetics or thermodynamics plays a more prominent role in the ability of molecular modifiers to impact crystal nucleation and growth processes. In the case of nanoporous zeolites, approaches in rational design often capitalize on the ability of organics, used as either modifiers or structure-directing agents, to markedly impact the physicochemical properties of zeolites. It has been demonstrated for multiple topologies that modifier-zeolite interactions can alter crystal size and morphology, yet few studies have distinguished the roles of thermodynamics and kinetics. We use a combination of calorimetry and molecular modeling to estimate the binding energies of organics on zeolite surfaces and correlate these results with synthetic trends in crystal morphology. Our findings reveal unexpectedly small energies of interaction for a range of modifiers with two zeolite structures, indicating the effect of organics on zeolite crystal surface free energy is minor and kinetic factors most likely govern growth modification.

20.
Angew Chem Int Ed Engl ; 60(48): 25391-25396, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34406684

RESUMO

Given the strong influence of surface structure on the reactivity of heterogeneous catalysts, understanding the mechanisms that control crystal morphology is an important component of designing catalytic materials with targeted shape and functionality. Herein, we employ density functional theory to examine the impact of growth media on NiO crystal faceting in line with experimental findings, showing that molten-salt synthesis in alkali chlorides (KCl, LiCl, and NaCl) imposes shape selectivity on NiO particles. We find that the production of NiO octahedra is attributed to the dissociative adsorption of H2 O, whereas the formation of trapezohedral particles is associated with the control of the growth kinetics exerted by ordered salt structures on high-index facets. To our knowledge, this is the first observation that growth inhibition of metal-oxide facets occurs by a localized ordering of molten salts at the crystal-solvent interface. These findings provide new molecular-level insight on kinetics and thermodynamics of molten-salt synthesis as a predictive route to shape-engineer metal-oxide crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...