Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34117750

RESUMO

Neurodegenerative diseases such as Alzheimer's and Parkinson's currently affect ∼25 million people worldwide. The global incidence of traumatic brain injury (TBI) is estimated at ∼70 million/year. Both neurodegenerative diseases and TBI remain without effective treatments. We are utilizing adult Drosophila melanogaster to investigate the mechanisms of brain regeneration with the long-term goal of identifying targets for neural regenerative therapies. We specifically focused on neurogenesis, i.e., the generation of new cells, as opposed to the regrowth of specific subcellular structures such as axons. Like mammals, Drosophila have few proliferating cells in the adult brain. Nonetheless, within 24 hours of a penetrating traumatic brain injury (PTBI) to the central brain, there is a significant increase in the number of proliferating cells. We subsequently detect both new glia and new neurons and the formation of new axon tracts that target appropriate brain regions. Glial cells divide rapidly upon injury to give rise to new glial cells. Other cells near the injury site upregulate neural progenitor genes including asense and deadpan and later give rise to the new neurons. Locomotor abnormalities observed after PTBI are reversed within 2 weeks of injury, supporting the idea that there is functional recovery. Together, these data indicate that adult Drosophila brains are capable of neuronal repair. We anticipate that this paradigm will facilitate the dissection of the mechanisms of neural regeneration and that these processes will be relevant to human brain repair.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Axônios/metabolismo , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Lesões Encefálicas Traumáticas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neuroglia/metabolismo , Regeneração
2.
G3 (Bethesda) ; 10(9): 3109-3119, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32631949

RESUMO

Neuroinflammation is a major pathophysiological feature of traumatic brain injury (TBI). Early and persistent activation of innate immune response signaling pathways by primary injuries is associated with secondary cellular injuries that cause TBI outcomes to change over time. We used a Drosophila melanogaster model to investigate the role of antimicrobial peptides (AMPs) in acute and chronic outcomes of closed-head TBI. AMPs are effectors of pathogen and stress defense mechanisms mediated by the evolutionarily conserved Toll and Immune-deficiency (Imd) innate immune response pathways that activate Nuclear Factor kappa B (NF-κB) transcription factors. Here, we analyzed the effect of null mutations in 10 of the 14 known Drosophila AMP genes on TBI outcomes. We found that mutation of Metchnikowin (Mtk) was unique in protecting flies from mortality within the 24 h following TBI under two diet conditions that produce different levels of mortality. In addition, Mtk mutants had reduced behavioral deficits at 24 h following TBI and increased lifespan either in the absence or presence of TBI. Using a transcriptional reporter of gene expression, we found that TBI increased Mtk expression in the brain. Quantitative analysis of mRNA in whole flies revealed that expression of other AMPs in the Toll and Imd pathways as well as NF-κB transcription factors were not altered in Mtk mutants. Overall, these results demonstrate that Mtk plays an infection-independent role in the fly nervous system, and TBI-induced expression of Mtk in the brain activates acute and chronic secondary injury pathways that are also activated during normal aging.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas de Drosophila , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Lesões Encefálicas Traumáticas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Citotóxicas Formadoras de Poros
3.
PLoS One ; 13(1): e0190821, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29338042

RESUMO

Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Alelos , Animais , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Genes de Insetos/efeitos dos fármacos , Genes Letais/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Masculino , Mutação , Degeneração Neural/genética , Compostos Organotiofosforados/farmacologia , Fenótipo , Proteínas Serina-Treonina Quinases
4.
Elife ; 42015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25742603

RESUMO

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood-brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction.


Assuntos
Lesões Encefálicas/genética , Proteínas de Drosophila/genética , Mucosa Intestinal/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Animais Recém-Nascidos , Carga Bacteriana , Barreira Hematoaquosa/metabolismo , Barreira Hematoaquosa/fisiopatologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/mortalidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Glucose/administração & dosagem , Glucose/metabolismo , Glucose/farmacologia , Hemolinfa/metabolismo , Hemolinfa/microbiologia , Humanos , Intestinos/efeitos dos fármacos , Intestinos/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Taxa de Sobrevida , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(11): E656-64, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22355133

RESUMO

To investigate the mechanistic basis for central nervous system (CNS) neurodegeneration in the disease ataxia-telangiectasia (A-T), we analyzed flies mutant for the causative gene A-T mutated (ATM). ATM encodes a protein kinase that functions to monitor the genomic integrity of cells and control cell cycle, DNA repair, and apoptosis programs. Mutation of the C-terminal amino acid in Drosophila ATM inhibited the kinase activity and caused neuron and glial cell death in the adult brain and a reduction in mobility and longevity. These data indicate that reduced ATM kinase activity is sufficient to cause neurodegeneration in A-T. ATM kinase mutant flies also had elevated expression of innate immune response genes in glial cells. ATM knockdown in glial cells, but not neurons, was sufficient to cause neuron and glial cell death, a reduction in mobility and longevity, and elevated expression of innate immune response genes in glial cells, indicating that a non-cell-autonomous mechanism contributes to neurodegeneration in A-T. Taken together, these data suggest that early-onset CNS neurodegeneration in A-T is similar to late-onset CNS neurodegeneration in diseases such as Alzheimer's in which uncontrolled inflammatory response mediated by glial cells drives neurodegeneration.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/enzimologia , Drosophila melanogaster/imunologia , Imunidade Inata/imunologia , Degeneração Neural/enzimologia , Degeneração Neural/imunologia , Neuroglia/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Imunidade Inata/genética , Longevidade , Degeneração Neural/genética , Degeneração Neural/patologia , Neuroglia/imunologia , Neuroglia/patologia , Neurônios/enzimologia , Neurônios/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Temperatura , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/genética
7.
Genes Dev ; 22(9): 1205-20, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18408079

RESUMO

Mutations in ATM (Ataxia telangiectasia mutated) result in Ataxia telangiectasia (A-T), a disorder characterized by progressive neurodegeneration. Despite advances in understanding how ATM signals cell cycle arrest, DNA repair, and apoptosis in response to DNA damage, it remains unclear why loss of ATM causes degeneration of post-mitotic neurons and why the neurological phenotype of ATM-null individuals varies in severity. To address these issues, we generated a Drosophila model of A-T. RNAi knockdown of ATM in the eye caused progressive degeneration of adult neurons in the absence of exogenously induced DNA damage. Heterozygous mutations in select genes modified the neurodegeneration phenotype, suggesting that genetic background underlies variable neurodegeneration in A-T. The neuroprotective activity of ATM may be negatively regulated by deacetylation since mutations in a protein deacetylase gene, RPD3, suppressed neurodegeneration, and a human homolog of RPD3, histone deacetylase 2, bound ATM and abrogated ATM activation in cell culture. Moreover, knockdown of ATM in post-mitotic neurons caused cell cycle re-entry, and heterozygous mutations in the cell cycle activator gene String/CDC25 inhibited cell cycle re-entry and neurodegeneration. Thus, we hypothesize that ATM performs a cell cycle checkpoint function to protect post-mitotic neurons from degeneration and that cell cycle re-entry causes neurodegeneration in A-T.


Assuntos
Ataxia Telangiectasia/genética , Ciclo Celular/genética , Proteínas de Drosophila/genética , Mutação , Degeneração Neural/genética , Proteínas Tirosina Fosfatases/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Apoptose/fisiologia , Ataxia Telangiectasia/fisiopatologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila/genética , Drosophila/fisiologia , Drosophila/ultraestrutura , Proteínas de Drosophila/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Olho/metabolismo , Olho/ultraestrutura , Feminino , Citometria de Fluxo , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Degeneração Neural/fisiopatologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Interferência de RNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Biochemistry ; 44(17): 6640-9, 2005 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-15850397

RESUMO

Phosphite dehydrogenase (PTDH) catalyzes the NAD-dependent oxidation of phosphite to phosphate, a reaction that is 15 kcal/mol exergonic. The enzyme belongs to the family of D-hydroxy acid dehydrogenases. Five other family members that were analyzed do not catalyze the oxidation of phosphite, ruling out the possibility that this is a ubiquitous activity of these proteins. PTDH does not accept any alternative substrates such as thiophosphite, hydrated aldehydes, and methylphosphinate, and potential small nucleophiles such as hydroxylamine, fluoride, methanol, and trifluoromethanol do not compete with water in the displacement of the hydride from phosphite. The pH dependence of k(cat)/K(m,phosphite) is bell-shaped with a pK(a) of 6.8 for the acidic limb and a pK(a) of 7.8 for the basic limb. The pK(a) of 6.8 is assigned to the second deprotonation of phosphite. However, whether the dianionic form of phosphite is the true substrate is not clear since a reverse protonation mechanism is also consistent with the available data. Unlike k(cat)/K(m,phosphite), k(cat) and k(cat)/K(m,NAD) are pH-independent. Sulfite is a strong inhibitor of PTDH that is competitive with respect to phosphite and uncompetitive with respect to NAD(+). Incubation of the enzyme with NAD(+) and low concentrations of sulfite results in a covalent adduct between NAD(+) and sulfite in the active site of the enzyme that binds very tightly. Fluorescent titration studies provided the apparent dissociation constants for NAD(+), NADH, sulfite, and the sulfite-NAD(+) adduct. Substrate isotope effect studies with deuterium-labeled phosphite resulted in small normal isotope effects (1.4-2.1) on both k(cat) and k(cat)/K(m,phosphite) at pH 7.25 and 8.0. Solvent isotope effects (SIEs) on k(cat) are similar in size; however, the SIE of k(cat)/K(m,phosphite) at pH 7.25 is significantly larger (4.4), whereas at pH 8.0, it is the inverse (0.6). The pH-rate profile of k(cat)/K(m,phosphite), which predicts that the observed SIEs will have a significant thermodynamic origin, can account for these effects.


Assuntos
Inibidores Enzimáticos/química , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/química , Sequência de Aminoácidos , Ligação Competitiva , Catálise , Medição da Troca de Deutério , Inibidores Enzimáticos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , NAD/química , NADH NADPH Oxirredutases/metabolismo , Fosfitos/química , Ligação Proteica , Solventes/química , Especificidade por Substrato , Sulfitos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...