Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Mater Au ; 4(2): 224-237, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38496053

RESUMO

Porous liquids (PLs), which are solvent-based systems that contain permanent porosity due to the incorporation of a solid porous host, are of significant interest for the capture of greenhouse gases, including CO2. Type 3 PLs formed by using metal-organic frameworks (MOFs) as the nanoporous host provide a high degree of chemical turnability for gas capture. However, pore aperture fluctuation, such as gate-opening in zeolitic imidazole framework (ZIF) MOFs, complicates the ability to keep the MOF pores available for gas adsorption. Therefore, an understanding of the solvent molecular size required to ensure exclusion from MOFs in ZIF-based Type 3 PLs is needed. Through a combined computational and experimental approach, the solvent-pore accessibility of exemplar MOF ZIF-8 was examined. Density functional theory (DFT) calculations identified that the lowest-energy solvent-ZIF interaction occurred at the pore aperture. Experimental density measurements of ZIF-8 dispersed in various-sized solvents showed that ZIF-8 adsorbed solvent molecules up to 2 Å larger than the crystallographic pore aperture. Density analysis of ZIF dispersions was further applied to a series of possible ZIF-based PLs, including ZIF-67, -69, -71(RHO), and -71(SOD), to examine the structure-property relationships governing solvent exclusion, which identified eight new ZIF-based Type 3 PL compositions. Solvent exclusion was driven by pore aperture expansion across all ZIFs, and the degree of expansion, as well as water exclusion, was influenced by ligand functionalization. Using these results, a design principle was formulated to guide the formation of future ZIF-based Type 3 PLs that ensures solvent-free pores and availability for gas adsorption.

2.
ACS Appl Mater Interfaces ; 15(27): 32792-32802, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379160

RESUMO

Porous liquids (PLs) based on the zeolitic imidazole framework ZIF-8 are attractive systems for carbon capture since the hydrophobic ZIF framework can be solvated in aqueous solvent systems without porous host degradation. However, solid ZIF-8 is known to degrade when exposed to CO2 in wet environments, and therefore the long-term stability of ZIF-8-based PLs is unknown. Through aging experiments, the long-term stability of a ZIF-8 PL formed using the water, ethylene glycol, and 2-methylimidazole solvent system was systematically examined, and the mechanisms of degradation were elucidated. The PL was found to be stable for several weeks, with no ZIF framework degradation observed after aging in N2 or air. However, for PLs aged in a CO2 atmosphere, formation of a secondary phase occurred within 1 day from the degradation of the ZIF-8 framework. From the computational and structural evaluation of the effects of CO2 on the PL solvent mixture, it was identified that the basic environment of the PL caused ethylene glycol to react with CO2 forming carbonate species. These carbonate species further react within the PL to degrade ZIF-8. The mechanisms governing this process involves a multistep pathway for PL degradation and lays out a long-term evaluation strategy of PLs for carbon capture. Additionally, it clearly demonstrates the need to examine the reactivity and aging properties of all components in these complex PL systems in order to fully assess their stabilities and lifetimes.

3.
J Phys Chem A ; 127(13): 2881-2888, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947182

RESUMO

Rare-earth terephthalic acid (BDC)-based metal-organic frameworks (MOFs) are promising candidate materials for acid gas separation and adsorption from flue gas streams. However, previous simulations have shown that acid gases (H2O, NO2, and SO2) react with the hydroxyl on the BDC linkers to form protonated acid gases as a potential degradation mechanism. Herein, gas-phase computational approaches were used to identify the formation energies of these secondary protonated acid gases across multiple BDC linker molecules. Formation energies for secondary protonated acid gases were evaluated using both density functional theory (DFT) and correlated wave function methods for varying BDC-gas reaction mechanisms. Upon validation of DFT to reproduce wave function calculation results, rotated conformational linkers and chemically functionalized BDC linkers with -OH, -NH2, and -SH were investigated. The calculations show that the rotational conformation affects the molecule stability. Double-functionalized BDC linkers, where two functional groups are substituted onto BDC, showed varied reaction energies depending on whether the functional groups donate or withdraw electrons from the aromatic system. Based on these results, BDC linker design must balance adsorption performance with degradation via linker dehydrogenation for the design of stable MOFs for acid gas separations.

4.
Polymers (Basel) ; 15(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771929

RESUMO

Polymer concrete (PC) has been used to replace cement concrete when harsh service conditions exist. Polymers have a high carbon footprint when considering their life cycle analysis, and with increased climate change concerns and the need to reduce greenhouse gas emission, bio-based polymers could be used as a sustainable alternative binder to produce PC. This paper examines the development and characterization of a novel bio-polymer concrete (BPC) using bio-based polyurethane used as the binder in lieu of cement, modified with benzoic acid and carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs). The mechanical performance, durability, microstructure, and chemical properties of BPC are investigated. Moreover, the effect of the addition of benzoic acid and MWCNTs on the properties of BPC is studied. The new BPC shows relatively low density, appreciable compressive strength between 20-30 MPa, good tensile strength of 4 MPa, and excellent durability resistance against aggressive environments. The new BPC has a low carbon footprint, 50% lower than ordinary Portland cement concrete, and can provide a sustainable concrete alternative in infrastructural applications.

5.
Phys Rev E ; 108(6-1): 064503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243517

RESUMO

Single-molecule stretching experiments are widely utilized within the fields of physics and chemistry to characterize the mechanics of individual bonds or molecules, as well as chemical reactions. Analytic relations describing these experiments are valuable, and these relations can be obtained through the statistical thermodynamics of idealized model systems representing the experiments. Since the specific thermodynamic ensembles manifested by the experiments affect the outcome, primarily for small molecules, the stretching device must be included in the idealized model system. Though the model for the stretched molecule might be exactly solvable, including the device in the model often prevents analytic solutions. In the limit of large or small device stiffness, the isometric or isotensional ensembles can provide effective approximations, but the device effects are missing. Here a dual set of asymptotically correct statistical thermodynamic theories are applied to develop accurate approximations for the full model system that includes both the molecule and the device. The asymptotic theories are first demonstrated to be accurate using the freely jointed chain model and then using molecular dynamics calculations of a single polyethylene chain.

6.
Sci Rep ; 12(1): 22264, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564407

RESUMO

Rock, concrete, and other engineered materials are often composed of several minerals that change volumetrically in response to variations in the moisture content of the local environment. Such differential shrinkage is caused by varying shrinkage rates between mineral compositions during dehydration. Using both 3D X-ray imaging of geo-architected samples and peridynamic (PD) numerical simulations, we show that the spatial distribution of the clay affects the crack network geometry with distributed clay particles yielding the most complex crack networks and percent damage (99.56%), along with a 60% reduction in material strength. We also demonstrate that crack formation, growth, coalescence, and distribution during dehydration, are controlled by the differential shrinkage rates between a highly shrinkable clay and a homogeneous mortar matrix. Sensitivity tests performed with the PD models show a clay shrinkage parameter of 0.4 yields considerable damage, and reductions in the parameter can result in a significant reduction in fracturing and an increase in material strength. Additionally, isolated clay inclusions induced localized fracturing predominantly due to debonding between the clay and matrix. These insights indicate differential shrinkage is a source of potential failure in natural and engineered barriers used to sequester anthropogenic waste.

7.
JACS Au ; 2(8): 1889-1898, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36032529

RESUMO

Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by µ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

8.
Chemistry ; 28(58): e202201926, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35867588

RESUMO

Understanding the selectivity of metal-organic frameworks (MOFs) to complex acid gas streams will enable their use in industrial applications. Herein, ab initio molecular dynamic simulations (AIMD) were used to simulate ternary gas mixtures (H2 O-NO2 -SO2 ) in rare earth 2,5-dihydroxyterephthalic acid (RE-DOBDC) MOFs. Stronger H2 O gas-metal binding arose from thermal vibrations in the MOF sterically hindering access of SO2 and NO2 molecules to the metal sites. Gas-gas and gas-linker interactions within the MOF framework resulted in the formation of multiple secondary gas species including HONO, HNO2 , NOSO, and HNO3 - . Four gas adsorption sites were identified along with a new de-protonation reaction mechanism not observable through experiment. This study not only provides valuable information on competitive gas binding energies in the MOF, it also provides important chemical insights into transient chemical reactions and mechanisms.

9.
Inorg Chem ; 61(16): 6120-6127, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35417165

RESUMO

Upon examination of the bond distances of the recently reported series of [Ln(SST)3(THF)2] [Ln = lanthanides, SST = tris(trimethylsilyl)siloxide (OSi(SiMe3)3), and THF = tetrahydrofuran] compounds, it was found that over the Ln-series (La through Lu), the Ln-O(THF) bond changed by 0.257 Å, whereas the Ln-O(SST) bond varied by 0.164 Å. Examination of all similarly ligated Ln-O(THF) (Ln = La vs Lu) structures available in the Cambridge Structural Database (CSD) revealed that this previously unreported, increased Ln-contraction is pervasive. Further evaluations showed that this enhanced Ln-contraction also occurs for pyridine (py) in the [Ln(SST)3(py)2] family as well as the average Ln-N(py) (La vs Lu) structure distances recovered from the CSD. Additional ligands, such as halides (Cl and I) were found to display this enhanced Ln-contraction, while other species (i.e., cyclopentadienide, alkoxide, SST, and dimethyl sulfoxide) yielded a "normal" Ln-contraction (La-L vs Lu-L). Gas-phase electronic structure density functional theory calculations were carried out to evaluate the molecular orbital influence on the Ln-contraction between Ln-O(SST) and Ln-O(THF). The calculated [Ln(SST)3(THF)2] structures were found to demonstrate the same capricious Ln-contraction. Based on these studies, one can say that the variability of the Ln-contraction noted in the [Ln(SST)3(THF)2] experimental data is due to the different bonding types, ion-ion for the Ln-SST bond versus ion-dipole for the Ln-THF bond.

10.
ACS Appl Mater Interfaces ; 14(16): 18005-18015, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420771

RESUMO

In this Perspective, we present the unique gas adsorption capabilities of porous liquids (PLs) and the value of complex computational methods in the design of PL compositions. Traditionally, liquids only contain transient pore space between molecules that limit long-term gas capture. However, PLs are stable fluids that that contain permanent porosity due to the combination of a rigid porous host structure and a solvent. PLs exhibit remarkable adsorption and separation properties, including increased solubility and selectivity. The unique gas adsorption properties of PLs are based on their structure, which exhibits multiple gas binding sites in the pore and on the cage surface, varying binding mechanisms including hydrogen-bonding and π-π interactions, and selective diffusion in the solvent. Tunable PL compositions will require fundamental investigations of competitive gas binding mechanisms, thermal effects on binding site stability, and the role of nanoconfinement on gas and solvent diffusion that can be accelerated through molecular modeling. With these new insights PLs promise to be an exceptional material class with tunable properties for targeted gas adsorption.

11.
ACS Omega ; 7(9): 7963-7972, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284770

RESUMO

Barely porous organic cages (POCs) successfully separate hydrogen isotopes (H2/D2) at temperatures below 100 K. Identifying the mechanisms that control the separation process is key to the design of next-generation hydrogen separation materials. Here, ab initio molecular dynamics (AIMD) simulations are used to elucidate the mechanisms that control D2 and H2 separation in barely POCs with varying functionalization. The temperature and pore size dependence were identified, including the selective capture of D2 in three different CC3 structures (RCC3, CC3-S, and 6ET-RCC3). The temperature versus capture trend was reversed for the 6ET-RCC3 structure, identifying that the D2 and H2 escape mechanisms are unique in highly functionalized systems. Analysis of calculated isotope velocities identified effective pore sizes that extend beyond the pore opening distances, resulting in increased capture in minimally functionalized CC3-S and RCC3. In a highly functionalized POC, 6ET-RCC3, higher velocities of the H isotopes were calculated moving through the restricted pore compared to the rest of the system, identifying a unique molecular behavior in the barely nanoporous pore openings. By using AIMD, mechanisms of H2 and D2 separation were identified, allowing for the targeted design of future novel materials for hydrogen isotope separation.

12.
ACS Appl Mater Interfaces ; 13(47): 56337-56347, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793131

RESUMO

In the pursuit of highly stable and selective metal-organic frameworks (MOFs) for the adsorption of caustic acid gas species, an entire series of rare earth MOFs have been explored. Each of the MOFs in this series (RE-DOBDC; RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; DOBDC = 2,5-dihydroxyterepthalic acid) was synthesized in the tetragonal space group I4/m. Crystallized MOF samples, specifically Eu-DOBDC, were seen to have a combination of monodentate and bidentate binding when synthesized under typical reaction conditions, resulting in a contortion of the structure. However, extended crystallization times determined that this binding is kinetically controlled and that the monodentate binding option was crystallographically eliminated by extended reaction times at higher temperatures. Furthermore, this series allows for the direct study of the effect of the metal center on the structure of the of the MOF; herein, the lanthanide metal ionic radii contraction across the periodic table results in a reduction of the MOF pore size and lattice parameters. Scanning electron microscopy-energy-dispersive spectroscopy was used to investigate the stages of crystal growth for these RE-DOBDC MOFs. All MOFs, except Er-DOBDC had a minimum of two stages of growth. These analogues were demonstrated by analysis of neutron diffraction (PND) to exhibit a cooperative rotational distortion of the secondary building unit, resulting in two crystallographically distinct linker sublattices. Computational modeling efforts were used to show distinct differences on acid gas (NO2 and SO2) binding energies for RE-DOBDC MOFs when comparing the monodentate/bidentate combined linker with the bidentate-only linker crystal structures.

13.
Langmuir ; 37(45): 13291-13299, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34731565

RESUMO

Elevated temperature and pressure in the earth's subsurface alters the permeability of salt formations, due to changing properties of the salt-brine interface. Molecular dynamics (MD) simulations are used to investigate the mechanisms of temperature and pressure dependence of liquid-solid interfacial tensions of NaCl, KCl, and NaCl-KCl brines in contact with (100) salt surfaces. Salt-brine dihedral angles vary between 55 and 76° across the temperature (300-450 K) and pressure range (0-150 MPa) evaluated. Temperature-dependent brine composition results in elevated dihedral angles of 65-80°, which falls above the reported salt percolation threshold of 60°. Mixed NaCl-KCl brine compositions increased this effect. Elevated temperatures excluded dissolved Na+ ions from the interface, causing the strong temperature dependence of the liquid-solid interfacial tension and the resulting dihedral angle. Therefore, at higher temperature, pressure, and brine concentrations Na-Cl systems may underpredict the dihedral angle. Higher dihedral angles in more realistic mixed brine systems maintain low permeability of salt formations due to changes in the structure and energetics of the salt-brine interface.

14.
ACS Omega ; 6(17): 11404-11410, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056295

RESUMO

Alternative candidate precursors to [Hf(BH4)4] for low-temperature chemical vapor deposition of hafnium diboride (HfB2) films were identified using density functional theory simulations of molecules with the composition [Hf(BH4)2L2], where L = -OH, -OMe, -O-t-Bu, -NH2, -N=C=O, -N(Me)2, and -N(CH2)5NH2 (1-piperidin-2-amine referred to as Pip2A). Disassociation energies (E D), potential energy surface (PES) scans, ionization potentials, and electron affinities were all calculated to identify the strength of the Hf-L bond and the potential reactivity of the candidate precursor. Ultimately, the low E D (2.07 eV) of the BH4 ligand removal from the Hf atom in [Hf(BH4)4] was partially attributed to an intermediate state where [Hf(BH4)3(H)] and BH3 is formed. Of the candidate precursors investigated, three exhibited a similar mechanism, but only -Pip2A had a PES scan that indicated binding competitive with [Hf(BH4)4], making it a viable candidate for further study.

15.
Angew Chem Int Ed Engl ; 60(20): 11514-11522, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690943

RESUMO

Reactive gas formation in pores of metal-organic frameworks (MOFs) is a known mechanism of framework destruction; understanding those mechanisms for future durability design is key to next generation adsorbents. Herein, an extensive set of ab initio molecular dynamics (AIMD) simulations are used for the first time to predict competitive adsorption of mixed acid gases (NO2 and H2 O) and the in-pore reaction mechanisms for a series of rare earth (RE)-DOBDC MOFs. Spontaneous formation of nitrous acid (HONO) is identified as a result of deprotonation of the MOF organic linker, DOBDC. The unique DOBDC coordination to the metal clusters allows for proton transfer from the linker to the NO2 without the presence of H2 O and may be a factor in DOBDC MOF durability. This is a previously unreported mechanisms of HONO formation in MOFs. With the presented methodology, prediction of future gas interactions in new nanoporous materials can be achieved.

16.
ACS Appl Mater Interfaces ; 12(17): 19504-19510, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32250585

RESUMO

The magnetic susceptibility of NOx-loaded RE-DOBDC (rare earth (RE): Y, Eu, Tb, Yb; DOBDC: 2,5-dihydroxyterephthalic acid) metal-organic frameworks (MOFs) is unique to the MOF metal center. RE-DOBDC samples were synthesized, activated, and subsequently exposed to humid NOx. Each NOx-loaded MOF was characterized by powder X-ray diffraction, and the magnetic characteristics were probed by using a VersaLab vibrating sample magnetometer (VSM). Lanthanide-containing RE-DOBDC (Eu, Tb, Yb) are paramagnetic with a reduction in paramagnetism upon adsorption of NOx. Y-DOBDC has a diamagnetic moment with a slight reduction upon adsorption of NOx. The magnetic susceptibility of the MOF is determined by the magnetism imparted by the framework metal center. The electronic population of orbitals contributes to determining the extent of magnetism and change with NOx (electron acceptor) adsorption. Eu-DOBDC results in the largest mass magnetization change upon adsorption of NOx due to more available unpaired f electrons. Experimental changes in magnetic moment were supported by density functional theory (DFT) simulations of NOx adsorbed in lanthanide Eu-DOBDC and transition metal Y-DOBDC MOFs.

17.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093106

RESUMO

Magnesium oxide (MgO) can convert to different magnesium-containing compounds depending on exposure and environmental conditions. Many MgO-based phases contain hydrated species allowing 1H-nuclear magnetic resonance (NMR) spectroscopy to be used in the characterization and quantification of proton-containing phases; however, surprisingly limited examples have been reported. Here, 1H-magic angle spinning (MAS) NMR spectra of select Mg-based minerals are presented and assigned. These experimental results are combined with computational NMR density functional theory (DFT) periodic calculations to calibrate the predicted chemical shielding results. This correlation is then used to predict the NMR shielding for a series of different MgO hydroxide, magnesium chloride hydrate, magnesium perchlorate, and magnesium cement compounds to aid in the future assignment of 1H-NMR spectra for complex Mg phases.


Assuntos
Óxido de Magnésio/química , Minerais/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
18.
Langmuir ; 36(9): 2482-2491, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32097016

RESUMO

Permeability of salt formations is controlled by the equilibrium between the salt-brine and salt-salt interfaces described by the dihedral angle, which can change with the composition of the intergranular brine. Here, classical molecular dynamics (MD) simulations were used to investigate the structure and properties of the salt-brine interface to provide insight into the stability of salt systems. Mixed NaCl-KCl brines were investigated to explore differences in ion size on the surface energy and interface structure. Nonlinearity was noted in the salt-brine surface energy with increasing KCl concentration, and the addition of 10% KCl increased surface energies by 2-3 times (5.0 M systems). Size differences in Na+ and K+ ions altered the packing of dissolved ions and water molecules at the interface, impacting the surface energy. Additionally, ions at the interface had lower numbers of coordinating water molecules than those in the bulk and increased hydration for ions in systems with 100% NaCl or 100% KCl brines. Ultimately, small changes in brine composition away from pure NaCl altered the structure of the salt-brine interface, impacting the dihedral angle and the predicted equilibrium permeability of salt formations.

19.
ACS Appl Mater Interfaces ; 12(4): 4531-4539, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905286

RESUMO

Organic linkers in metal-organic framework (MOF) materials exhibit differences in hydrogen bonding (H-bonding), which can alter the geometric, electronic, and optical properties of the MOF. Density functional theory (DFT) simulations were performed on a photoluminescent Y-2,5-dihydroxyterephthalic acid (DOBDC) MOF with H-bonding concentrations between 0 and 100%; the H-bonds were located on both bidentate- and monodentate-bound DOBDC linkers. At 0% H-bond concentration in the framework, the lattice parameters contracted, the density increased, and simulated X-ray diffraction patterns shifted. Comparison with published experimental data identified that Y-DOBDC MOF structures must have a degree of H-bond concentration. The concentration of H-bonds in the system shifted the calculated band gap energy from 2.25 eV at 100% to 3.00 eV at 0%. The band gap energies also indicate a distinction of H-bonds formed on bidentate-coordinated linkers compared to those on monodentate linkers. Additionally, when the calculated optical spectra are compared with experimental data, the ligand-to-ligand charge-transfer luminescence in Y-DOBDC MOFs is expected to result from an average of 20-40% H-bonding with at least 50% of the bidentate linkers containing H-bonding. Therefore, the type of H-bonding within the DOBDC linker determines the electronic structure and the optical absorption of the MOF framework structure. Tuning of the H-bonding in rare-earth MOFs provides an opportunity to control the specific optical and adsorption properties of the MOF framework on the basis of reactions between the linker and the environment.

20.
Phys Chem Chem Phys ; 21(41): 23085-23093, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31603163

RESUMO

Here, we apply density functional theory (DFT) to investigate rare-earth metal organic frameworks (RE-MOFs), RE12(µ3-OH)16(C8O6H4)8(C8O6H5)4 (RE = Y, Eu, Tb, Yb), and characterize the level of theory needed to accurately predict structural and electronic properties in MOF materials with 4f-electrons. A two-step calculation approach of geometry optimization with spin-restricted DFT and large core potential (LCPs), and detailed electronic structures with spin-unrestricted DFT with a full valence potential + Hubbard U correction is investigated. Spin-restricted DFT with LCPs resulted in good agreement between experimental lattice parameters and optimized geometries, while a full valence potential is necessary for accurate representation of the electronic structure. The electronic structure of Eu-DOBDC MOF indicated a strong dependence on the treatment of highly localized 4f-electrons and spin polarization, as well as variation within a range of Hubbard corrections (U = 1-9 eV). For Hubbard corrected spin-unrestricted calculations, a U value of 1-4 eV maintains the non-metallic character of the band gap with slight deviations in f-orbital energetics. When compared with experimentally reported results, the importance of the full valence calculation and the Hubbard correction in correctly predicting the electronic structure is highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...