Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Allergy ; 79(1): 128-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37766519

RESUMO

BACKGROUND: Epithelial barrier impairment is associated with many skin and mucosal inflammatory disorders. Laundry detergents have been demonstrated to affect epithelial barrier function in vitro using air-liquid interface cultures of human epithelial cells. METHODS: Back skin of C57BL/6 mice was treated with two household laundry detergents at several dilutions. Barrier function was assessed by electric impedance spectroscopy (EIS) and transepidermal water loss (TEWL) measurements after the 4 h of treatments with detergents. RNA sequencing (RNA-seq) and targeted multiplex proteomics analyses in skin biopsy samples were performed. The 6-h treatment effect of laundry detergent and sodium dodecyl sulfate (SDS) was investigated on ex vivo human skin. RESULTS: Detergent-treated skin showed a significant EIS reduction and TEWL increase compared to untreated skin, with a relatively higher sensitivity and dose-response in EIS. The RNA-seq showed the reduction of the expression of several genes essential for skin barrier integrity, such as tight junctions and adherens junction proteins. In contrast, keratinization, lipid metabolic processes, and epidermal cell differentiation were upregulated. Proteomics analysis showed that the detergents treatment generally downregulated cell adhesion-related proteins, such as epithelial cell adhesion molecule and contactin-1, and upregulated proinflammatory proteins, such as interleukin 6 and interleukin 1 beta. Both detergent and SDS led to a significant decrease in EIS values in the ex vivo human skin model. CONCLUSION: The present study demonstrated that laundry detergents and its main component, SDS impaired the epidermal barrier in vivo and ex vivo human skin. Daily detergent exposure may cause skin barrier disruption and may contribute to the development of atopic diseases.


Assuntos
Detergentes , Pele , Humanos , Camundongos , Animais , Detergentes/efeitos adversos , Detergentes/química , Detergentes/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Epiderme/metabolismo , Inflamação/metabolismo
2.
Allergy ; 78(8): 2215-2231, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312623

RESUMO

BACKGROUND: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease with complex pathogenesis for which the cellular and molecular crosstalk in AD skin has not been fully understood. METHODS: Skin tissues examined for spatial gene expression were derived from the upper arm of 6 healthy control (HC) donors and 7 AD patients (lesion and nonlesion). We performed spatial transcriptomics sequencing to characterize the cellular infiltrate in lesional skin. For single-cell analysis, we analyzed the single-cell data from suction blister material from AD lesions and HC skin at the antecubital fossa skin (4 ADs and 5 HCs) and full-thickness skin biopsies (4 ADs and 2 HCs). The multiple proximity extension assays were performed in the serum samples from 36 AD patients and 28 HCs. RESULTS: The single-cell analysis identified unique clusters of fibroblasts, dendritic cells, and macrophages in the lesional AD skin. Spatial transcriptomics analysis showed the upregulation of COL6A5, COL4A1, TNC, and CCL19 in COL18A1-expressing fibroblasts in the leukocyte-infiltrated areas in AD skin. CCR7-expressing dendritic cells (DCs) showed a similar distribution in the lesions. Additionally, M2 macrophages expressed CCL13 and CCL18 in this area. Ligand-receptor interaction analysis of the spatial transcriptome identified neighboring infiltration and interaction between activated COL18A1-expressing fibroblasts, CCL13- and CCL18-expressing M2 macrophages, CCR7- and LAMP3-expressing DCs, and T cells. As observed in skin lesions, serum levels of TNC and CCL18 were significantly elevated in AD, and correlated with clinical disease severity. CONCLUSION: In this study, we show the unknown cellular crosstalk in leukocyte-infiltrated area in lesional skin. Our findings provide a comprehensive in-depth knowledge of the nature of AD skin lesions to guide the development of better treatments.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/metabolismo , Transcriptoma , Receptores CCR7 , Pele/patologia , Doença Crônica , RNA/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047690

RESUMO

Immune mechanisms play an essential role in driving multiple sclerosis (MS) and altered trafficking and/or activation of dendritic cells (DC) were observed in the central nervous system and cerebrospinal fluid of MS patients. Interferon ß (IFNß) has been used as a first-line therapy in MS for almost three decades and vitamin D deficiency is a recognized environmental risk factor for MS. Both IFNß and vitamin D modulate DC functions. Here, we studied the response to 1,25-dihydoxyvitamin D3 (1,25(OH)2D3) of DC obtained with IFNß/GM-CSF (IFN-DC) compared to classically derived IL4-DC, in three donor groups: MS patients free of therapy, MS patients undergoing IFNß therapy, and healthy donors. Except for a decreased CCL2 secretion by IL4-DC from the MS group, no major defects were observed in the 1,25(OH)2D3 response of either IFN-DC or IL4-DC from MS donors compared to healthy donors. However, the two cell models strongly differed for vitamin D receptor level of expression as well as for basal and 1,25(OH)2D3-induced cytokine/chemokine secretion. 1,25(OH)2D3 up-modulated IL6, its soluble receptor sIL6R, and CCL5 in IL4-DC, and down-modulated IL10 in IFN-DC. IFN-DC, but not IL4-DC, constitutively secreted high levels of IL8 and of matrix-metalloproteinase-9, both down-modulated by 1,25(OH)2D3. DC may contribute to MS pathogenesis, but also provide an avenue for therapeutic intervention. 1,25(OH)2D3-induced tolerogenic DC are in clinical trial for MS. We show that the protocol of in vitro DC differentiation qualitatively and quantitatively affects secretion of cytokines and chemokines deeply involved in MS pathogenesis.


Assuntos
Esclerose Múltipla , Vitamina D , Humanos , Vitamina D/farmacologia , Vitaminas/farmacologia , Citocinas , Quimiocinas
4.
Clin Exp Allergy ; 52(10): 1183-1194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35305052

RESUMO

BACKGROUND: Earlier studies have suggested that the leukocyte redistribution can be considered as an immunological marker of the clinical response to corticosteroids (CS), representing an easy measurable potential biomarker in severe asthma. OBJECTIVE: The aim of this study was to determinate the utility of the leukocyte redistribution as a biomarker of disease heterogeneity in patients with severe asthma and as a bioindicator of potential CS resistance. METHODS: We developed an unbiased clustering approach based on the clinical data and the flow cytometry results of peripheral blood leukocyte phenotypes of 142 patients with severe asthma before and after systemic CS administration. RESULTS: Based on the differences in the blood count eosinophils, neutrophils and lymphocytes, together with the flow cytometry measurements of basic T cell, B cell and NK cell subpopulations before and after systemic CS administration, we identified two severe asthma clusters, which differed in the cell frequencies, response to CS and atopy status. Patients in cluster 1 had higher frequency of blood eosinophils at baseline, were sensitized to less allergens and had better steroid responsiveness, measured as the pronounced leukocyte redistribution after the administration of systemic CS. Patients in cluster 2 were determined by the higher frequency of B-cells and stronger IgE sensitization status to the multiple allergens. They also displayed higher steroid resistance, as the clinical correlate for the lower leukocyte redistribution after administration of systemic CS. CONCLUSION: The flow cytometry-based profiling of the basic populations of immune cells in the blood and its analysis before and after systemic corticosteroid administration could improve personalized treatment approaches in patients with severe asthma.


Assuntos
Asma , Biomarcadores Ambientais , Corticosteroides/uso terapêutico , Alérgenos , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/genética , Biomarcadores , Eosinófilos , Humanos , Imunoglobulina E , Contagem de Leucócitos , Leucócitos
5.
Front Oncol ; 12: 1078822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36755856

RESUMO

Introduction: Artificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods. Methods: We prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions. Results: Of 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models' prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR. Conclusions: In this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients.

6.
Allergy ; 76(12): 3659-3686, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519063

RESUMO

During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network-based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point-of-care systems. Ideally, samples should be collected using quick, cost-efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro-inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID-19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID-19 pandemic.


Assuntos
COVID-19 , Hipersensibilidade , Rinite Alérgica , Biomarcadores , Humanos , Hipersensibilidade/diagnóstico , Imunidade Inata , Linfócitos , Pandemias , SARS-CoV-2
7.
Contact Dermatitis ; 85(6): 615-626, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34420214

RESUMO

The "epithelial barrier hypothesis" proposes that the exposure to various epithelial barrier-damaging agents linked to industrialization and urbanization underlies the increase in allergic diseases. The epithelial barrier constitutes the first line of physical, chemical, and immunological defense against environmental factors. Recent reports have shown that industrial products disrupt the epithelial barriers. Innate and adaptive immune responses play an important role in epithelial barrier damage. In addition, recent studies suggest that epithelial barrier dysfunction plays an essential role in the pathogenesis of the atopic march by allergen sensitization through the transcutaneous route. It is evident that external factors interact with the immune system, triggering a cascade of complex reactions that damage the epithelial barrier. Epigenetic and microbiome changes modulate the integrity of the epithelial barrier. Robust and simple measurements of the skin barrier dysfunction at the point-of-care are of significant value as a biomarker, as recently reported using electrical impedance spectroscopy to directly measure barrier defects. Understanding epithelial barrier dysfunction and its mechanism is key to developing novel strategies for the prevention and treatment of allergic diseases. The aim of this review is to summarize recent studies on the pathophysiological mechanisms triggered by environmental factors that contribute to the dysregulation of epithelial barrier function.


Assuntos
Dermatite Atópica/fisiopatologia , Exposição Ambiental , Epitélio/fisiopatologia , Imunidade Adaptativa , Alérgenos/efeitos adversos , Dermatite Atópica/etiologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Epigênese Genética , Epitélio/anatomia & histologia , Humanos , Imunidade Inata , Microbiota/fisiologia , Permeabilidade
8.
Allergy ; 76(10): 3066-3079, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33830511

RESUMO

BACKGROUND: Allergic disorders such as atopic dermatitis (AD) are strongly associated with an impairment of the epithelial barrier, in which tight junctions and/or filaggrin expression can be defective. Skin barrier assessment shows potential to be clinically useful for prediction of disease development, improved and earlier diagnosis, lesion follow-up, and therapy evaluation. This study aimed to establish a method to directly assess the in vivo status of epithelial barrier using electrical impedance spectroscopy (EIS). METHODS: Thirty-six patients with AD were followed during their 3-week hospitalization and compared with 28 controls. EIS and transepidermal water loss (TEWL) were measured in lesional and non-lesional skin. Targeted proteomics by proximity extension assay in serum and whole-genome sequence were performed. RESULTS: Electrical impedance spectroscopy was able to assess epithelial barrier integrity, differentiate between patients and controls without AD, and characterize lesional and non-lesional skin of patients. It showed a significant negative correlation with TEWL, but a higher sensitivity to discriminate non-lesional atopic skin from controls. During hospitalization, lesions reported a significant increase in EIS that correlated with healing, decreased SCORAD and itch scores. Additionally, EIS showed a significant inverse correlation with serum biomarkers associated with inflammatory pathways that may affect the epithelial barrier, particularly chemokines such as CCL13, CCL3, CCL7, and CXCL8 and other cytokines, such as IRAK1, IRAK4, and FG2, which were significantly high at admission. Furthermore, filaggrin copy numbers significantly correlated with EIS on non-lesional skin of patients. CONCLUSIONS: Electrical impedance spectroscopy can be a useful tool to detect skin barrier dysfunction in vivo, valuable for the assessment of AD severity, progression, and therapy efficacy.


Assuntos
Dermatite Atópica , Eczema , Citocinas , Dermatite Atópica/diagnóstico , Espectroscopia Dielétrica , Proteínas Filagrinas , Humanos , Prurido , Pele
9.
Allergy ; 75(12): 3124-3146, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32997808

RESUMO

In this review, we discuss recent publications on asthma and review the studies that have reported on the different aspects of the prevalence, risk factors and prevention, mechanisms, diagnosis, and treatment of asthma. Many risk and protective factors and molecular mechanisms are involved in the development of asthma. Emerging concepts and challenges in implementing the exposome paradigm and its application in allergic diseases and asthma are reviewed, including genetic and epigenetic factors, microbial dysbiosis, and environmental exposure, particularly to indoor and outdoor substances. The most relevant experimental studies further advancing the understanding of molecular and immune mechanisms with potential new targets for the development of therapeutics are discussed. A reliable diagnosis of asthma, disease endotyping, and monitoring its severity are of great importance in the management of asthma. Correct evaluation and management of asthma comorbidity/multimorbidity, including interaction with asthma phenotypes and its value for the precision medicine approach and validation of predictive biomarkers, are further detailed. Novel approaches and strategies in asthma treatment linked to mechanisms and endotypes of asthma, particularly biologicals, are critically appraised. Finally, due to the recent pandemics and its impact on patient management, we discuss the challenges, relationships, and molecular mechanisms between asthma, allergies, SARS-CoV-2, and COVID-19.


Assuntos
Asma/epidemiologia , Hipersensibilidade/epidemiologia , Asma/diagnóstico , Asma/terapia , Biomarcadores , COVID-19 , Comorbidade , Disbiose , Expossoma , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/terapia , Pandemias , Fenótipo , Medicina de Precisão , Fatores de Risco
10.
Ann Allergy Asthma Immunol ; 125(5): 517-527, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32454094

RESUMO

OBJECTIVE: Our understanding of the origin of allergic diseases has increased in recent years, highlighting the importance of microbial dysbiosis and epithelial barrier dysfunction in affected tissues. Exploring the microbial-epithelial-immune crosstalk underlying the mechanisms of allergic diseases will allow the development of novel prevention and treatment strategies for allergic diseases. DATA SOURCES: This review summarizes the recent advances in microbial, epithelial, and immune interactions in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, and asthma. STUDY SELECTIONS: We performed a literature search, identifying relevant recent primary articles and review articles. RESULTS: Dynamic crosstalk between the environmental factors and microbial, epithelial, and immune cells in the development of atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, and asthma underlies the pathogenesis of these diseases. There is substantial evidence in the literature suggesting that environmental factors directly affect barrier function of the epithelium. In addition, T-helper 2 (TH2) cells, type 2 innate lymphoid cells, and their cytokine interleukin 13 (IL-13) damage skin and lung barriers. The effects of environmental factors may at least in part be mediated by epigenetic mechanisms. Histone deacetylase activation by type 2 immune response has a major effect on leaky barriers and blocking of histone deacetylase activity corrects the defective barrier in human air-liquid interface cultures and mouse models of allergic asthma with rhinitis. We also present and discuss a novel device to detect and monitor skin barrier dysfunction, which provides an opportunity to rapidly and robustly assess disease severity. CONCLUSION: A complex interplay between environmental factors, epithelium, and the immune system is involved in the development of systemic allergic diseases.


Assuntos
Citocinas/imunologia , Epitélio/imunologia , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Sistema Imunitário/microbiologia , Animais , Asma/imunologia , Asma/microbiologia , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Modelos Animais de Doenças , Epitélio/microbiologia , Humanos , Imunidade Inata , Linfócitos/imunologia , Camundongos , Rinite Alérgica/imunologia , Rinite Alérgica/microbiologia
11.
Nutrients ; 11(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817726

RESUMO

Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.


Assuntos
Imunidade Adaptativa , Gorduras Insaturadas na Dieta/imunologia , Gorduras na Dieta/imunologia , Ácidos Graxos/imunologia , Imunidade Inata , Doenças Autoimunes/etiologia , Gorduras na Dieta/efeitos adversos , Gorduras Insaturadas na Dieta/efeitos adversos , Células Epiteliais/imunologia , Ácidos Graxos/efeitos adversos , Humanos , Hipersensibilidade Imediata/etiologia , Leucócitos/imunologia , Doenças Metabólicas/etiologia
12.
Allergy ; 74(10): 1934-1944, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30989659

RESUMO

BACKGROUND: Many skin and mucosal inflammatory disorders, such as atopic dermatitis, have been associated with an impaired epithelial barrier function, which allows allergens, pollutants, or microbes to enter the tissue and activate the immune response. The aim of this study was to establish a method to directly assess in vivo the epidermal barrier function by electrical impedance (EI) spectroscopy. METHODS: Mice epidermal barrier was damaged by epicutaneous application of proteases and cholera toxin and by tape stripping. EI and transepidermal water loss (TEWL) were measured before and after the application. Additionally, histological analysis, immunofluorescence staining, and RT-PCR were performed on skin biopsies to evaluate the epithelial barrier. RESULTS: A few hours after papain application, a dose-dependent reduction of EI was detected, reflecting the decreased barrier function. At the same time, an increase of TEWL was observed, with a significant negative correlation with EI, demonstrating that EI changes were directly linked to barrier defects. Twenty-four and 48 hours after the treatment, EI starts to increase to background levels, indicating tissue healing and restoration of skin barrier. Barrier disruption was confirmed by histological analysis showing an impaired stratum corneum and higher cellular infiltration after papain application. In addition, immunofluorescence staining and RT-PCR showed downregulation of molecules involved in the barrier function, such as filaggrin, occludin, and claudin-1, and mRNA levels of filaggrin, loricrin, and involucrin. Comparable results were observed after tape stripping and cholera toxin treatment. CONCLUSION: Electrical impedance spectroscopy is a rapid and reliable diagnostic tool to detect skin barrier defects.


Assuntos
Espectroscopia Dielétrica , Epiderme/fisiologia , Fenômenos Fisiológicos da Pele , Animais , Biópsia , Modelos Animais de Doenças , Proteínas Filagrinas , Humanos , Camundongos , Perda Insensível de Água
13.
J Allergy Clin Immunol ; 143(6): 2190-2201.e9, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30682454

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play critical roles in induction and exacerbation of allergic airway inflammation. Thus clarification of the mechanisms that underlie regulation of ILC2 activation has received significant attention. Although innate lymphoid cells are divided into 3 major subsets that mirror helper effector T-cell subsets, counterpart subsets of regulatory T cells have not been well characterized. OBJECTIVE: We sought to determine the factors that induce regulatory innate lymphoid cells (ILCregs). METHODS: IL-10+ ILCregs induced from ILC2s by using retinoic acid (RA) were analyzed with RNA-sequencing and flow cytometry. ILCregs were evaluated in human nasal tissue from healthy subjects and patients with chronic rhinosinusitis with nasal polyps and lung tissue from house dust mite- or saline-treated mice. RESULTS: RA induced IL-10 secretion by human ILC2s but not type 2 cytokines. IL-10+ ILCregs, which were converted from ILC2s by means of RA stimulation, expressed a regulatory T cell-like signature with expression of IL-10, cytotoxic T lymphocyte-associated protein 4, and CD25, with downregulated effector type 2-related markers, such as chemoattractant receptor-homologous molecule on TH2 cells and ST2, and suppressed activation of CD4+ T cells and ILC2s. ILCregs were rarely detected in human nasal tissue from healthy subjects or lung tissue from saline-treated mice, but numbers were increased in nasal tissue from patients with chronic rhinosinusitis with nasal polyps and in lung tissue from house dust mite-treated mice. Enzymes for RA synthesis were upregulated in airway epithelial cells during type 2 inflammation in vivo and by IL-13 in vitro. CONCLUSION: We have identified a unique immune regulatory and anti-inflammatory pathway by which RA converts ILC2s to ILCregs. Interactions between airway epithelial cells and ILC2s play an important roles in the generation of ILCregs.


Assuntos
Anti-Inflamatórios/farmacologia , Linfócitos/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Linhagem Celular , Citocinas/imunologia , Células Epiteliais/imunologia , Humanos , Imunidade Inata , Pulmão/imunologia , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Seios Paranasais/imunologia
14.
Allergy ; 74(5): 899-909, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30589936

RESUMO

BACKGROUND: Histamine is an important immunomodulator influencing both the innate and adaptive immune system. Certain host cells express the histidine decarboxylase enzyme (HDC), which is responsible for catalysing the decarboxylation of histidine to histamine. We and others have shown that bacterial strains can also express HDC and secrete histamine; however, the influence of bacterial-derived histamine on the host immune responses distant to the gut is unclear. METHODS: The Escherichia coli BL21 (E coli BL21) strain was genetically modified to express the Morganella morganii (M morganii)-derived HDC gene (E coli BL21_HTW). E coli BL21 and E coli BL21_HTW were gavaged to ovalbumin (OVA) sensitized and challenged mice to investigate the effect of bacterial-derived histamine on lung inflammatory responses. RESULTS: Oral administration of E coli BL21_HTW, which is able to secrete histamine, to wild-type mice reduced lung eosinophilia and suppressed ex vivo OVA-stimulated cytokine secretion from lung cells in the OVA respiratory inflammation mouse model. In histamine receptor 2 (H2R)-deficient mice, administration of histamine-secreting bacteria also reduced inflammatory cell numbers in bronchoalveolar lavage (BAL). However, the suppressive effect of bacterial-derived histamine on BAL inflammation was lost in HDC-deficient mice. This loss of activity was associated with increased expression of histamine degrading enzymes and reduced histamine receptor expression. CONCLUSION: Histamine secretion from bacteria within the gut can have immunological consequences at distant mucosal sites, such as within the lung. These effects are influenced by host histamine receptor expression and the expression of histamine degrading enzymes.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Histamina/biossíntese , Imunidade , Pulmão/imunologia , Pulmão/metabolismo , Animais , Modelos Animais de Doenças , Escherichia coli/fisiologia , Histidina Descarboxilase/deficiência , Histidina Descarboxilase/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo
16.
Hum Mol Genet ; 27(10): 1830-1846, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29566149

RESUMO

Most epigenome-wide association studies to date have been conducted in blood. However, metabolic syndrome is mediated by a dysregulation of adiposity and therefore it is critical to study adipose tissue in order to understand the effects of this syndrome on epigenomes. To determine if natural variation in DNA methylation was associated with metabolic syndrome traits, we profiled global methylation levels in subcutaneous abdominal adipose tissue. We measured association between 32 clinical traits related to diabetes and obesity in 201 people from the Metabolic Syndrome in Men cohort. We performed epigenome-wide association studies between DNA methylation levels and traits, and identified associations for 13 clinical traits in 21 loci. We prioritized candidate genes in these loci using expression quantitative trait loci, and identified 18 high confidence candidate genes, including known and novel genes associated with diabetes and obesity traits. Using methylation deconvolution, we examined which cell types may be mediating the associations, and concluded that most of the loci we identified were specific to adipocytes. We determined whether the abundance of cell types varies with metabolic traits, and found that macrophages increased in abundance with the severity of metabolic syndrome traits. Finally, we developed a DNA methylation-based biomarker to assess type 2 diabetes risk in adipose tissue. In conclusion, our results demonstrate that profiling DNA methylation in adipose tissue is a powerful tool for understanding the molecular effects of metabolic syndrome on adipose tissue, and can be used in conjunction with traditional genetic analyses to further characterize this disorder.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Síndrome Metabólica/genética , Obesidade/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Idoso , Biópsia , Índice de Massa Corporal , Ilhas de CpG/genética , Regulação da Expressão Gênica , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Locos de Características Quantitativas/genética
17.
J Allergy Clin Immunol ; 138(4): 984-1010, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27577879

RESUMO

There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-ß offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-ß, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases.


Assuntos
Doenças do Sistema Imunitário , Interferons/fisiologia , Interleucinas/fisiologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Humanos
19.
Retrovirology ; 12: 4, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608886

RESUMO

BACKGROUND: Macrophages are key targets of HIV-1 infection. We have previously described that the expression of CC chemokine ligand 2 (CCL2) increases during monocyte differentiation to macrophages and it is further up-modulated by HIV-1 exposure. Moreover, CCL2 acts as an autocrine factor that promotes viral replication in infected macrophages. In this study, we dissected the molecular mechanisms by which CCL2 neutralization inhibits HIV-1 replication in monocyte-derived macrophages (MDM), and the potential involvement of the innate restriction factors protein sterile alpha motif (SAM) histidine/aspartic acid (HD) domain containing 1 (SAMHD1) and apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family members. RESULTS: CCL2 neutralization potently reduced the number of p24 Gag+ cells during the course of either productive or single cycle infection with HIV-1. In contrast, CCL2 blocking did not modify entry of HIV-1 based Virus Like Particles, thus demonstrating that the restriction involves post-entry steps of the viral life cycle. Notably, the accumulation of viral DNA, both total, integrated and 2-LTR circles, was strongly impaired by neutralization of CCL2. Looking for correlates of HIV-1 DNA accumulation inhibition, we found that the antiviral effect of CCL2 neutralization was independent of the modulation of SAMHD1 expression or function. Conversely, a strong and selective induction of APOBEC3A expression, to levels comparable to those of freshly isolated monocytes, was associated with the inhibition of HIV-1 replication mediated by CCL2 blocking. Interestingly, the CCL2 neutralization mediated increase of APOBEC3A expression was type I IFN independent. Moreover, the transcriptome analysis of the effect of CCL2 blocking on global gene expression revealed that the neutralization of this chemokine resulted in the upmodulation of additional genes involved in the defence response to viruses. CONCLUSIONS: Neutralization of endogenous CCL2 determines a profound restriction of HIV-1 replication in primary MDM affecting post-entry steps of the viral life cycle with a mechanism independent of SAMHD1. In addition, CCL2 blocking is associated with induction of APOBEC3A expression, thus unravelling a novel mechanism which might contribute to regulate the expression of innate intracellular viral antagonists in vivo. Thus, our study may potentially lead to the development of new therapeutic strategies for enhancing innate cellular defences against HIV-1 and protecting macrophages from infection.


Assuntos
Quimiocina CCL2/antagonistas & inibidores , DNA Viral/metabolismo , HIV-1/fisiologia , Macrófagos/virologia , Replicação Viral , Células Cultivadas , Quimiocina CCL2/imunologia , Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/genética , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteína 1 com Domínio SAM e Domínio HD , Internalização do Vírus
20.
Toxins (Basel) ; 7(1): 129-37, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25590278

RESUMO

Vitamin D (vitD) low status is currently considered a main environmental factor in multiple sclerosis (MS) etiology and pathogenesis. VitD and its metabolites are highly hydrophobic and circulate mostly bound to the vitamin D binding protein (DBP) and with lower affinity to albumin, while less than 1% are in a free form. The aim of this study was to investigate whether the circulating levels of either of the two vitD plasma carriers and/or their relationship are altered in MS. We measured DBP and albumin plasma levels in 28 MS patients and 24 healthy controls. MS patients were found to have higher DBP levels than healthy subjects. Concomitant interferon beta therapy did not influence DBP concentration, and the difference with the control group was significant in both females and males. No significant correlation between DBP and albumin levels was observed either in healthy controls or in patients. These observations suggest the involvement of DBP in the patho-physiology of MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente/sangue , Proteína de Ligação a Vitamina D/sangue , Adulto , Albuminas/metabolismo , Feminino , Humanos , Interferon beta/uso terapêutico , Masculino , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...