Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(44)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901724

RESUMO

Bulk and surface trap-states in the Sb2S3films are considered one of the crucial energy loss mechanisms for achieving high photovoltaic performance in planar Sb2S3solar cells. Because ionic liquid additives offer interesting physicochemical properties to control the synthesis of inorganic material, in this work we propose the addition of 1-Butyl-3-methylimidazolium hydrogen sulfate (BMIMHS) into a Sb2S3hydrothermal precursor solution as a facile way to fabricate low-defect Sb2S3solar cells. Lower presence of small particles on the surface, as well as higher crystallinity are demonstrated in the BMIMHS-assisted Sb2S3films. Moreover, analyses of dark current density-voltageJ-Vcurves, surface photovoltage transient and intensity-modulated photocurrent spectroscopy have suggested that adding BMIMHS results in high-quality Sb2S3films and a successful defect passivation. Consequently, the best-performing BMIMHS-assisted device exhibits a 15.4% power conversion efficiency enhancement compared to that of control device. These findings show that ionic liquid BMIMHS can effectively be used to obtain high-quality Sb2S3films with low-defects and improved optoelectronic properties.

2.
J Colloid Interface Sci ; 585: 649-659, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33153713

RESUMO

Increasing the electrochemical performance of electrode materials in sodium ion batteries (NIBs) remains a major challenge. Here, a combined experimental and theoretical investigation on the modification induced by Sb2S3 embedded in a heteroatom-doped 3D carbon matrix (CM) for efficient anodes in NIBs is presented. The structural and chemical characterization demonstrates the successful doping of 3D CM with S and Sb atoms. When evaluated as anode materials for NIBs, the heteroatom-doped nanocomposites delivered a better cycling stability and superior rate capability than those of undoped Sb2S3/CM anodes. First principle calculations were used at the Density Functional Theory level to systematically study the Sb2S3/CM and Sb2S3/heteroatom doped-CM composites, as NIBs anodes. Doping the carbon substrate by heteroatoms improved the adsorption of Sb2S3 on the matrix and allowed for ionic/covalent attraction with the Sb2S3 nanoparticle, respectively. Such results could be used to model the stabilty of the composite architectures observed in the experiment, for superior cycling stability.

3.
J Colloid Interface Sci ; 535: 400-407, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30317080

RESUMO

To achieve superior photovoltaic performance on Sb2S3 solid state solar cells (ssSCs), the concomitant development of efficient hole transport materials (HTMs) is required. Herein, a novel solution processed HTM obtained by mixing NiOx nanoparticles (NiOx-NP) and poly(3-hexylthiophene) (P3HT) is reported. These P3HT:NiOx-NP nanocomposite HTMs were obtained with different controlled concentrations of NiOx-NP using a common solvent. Incorporation of NiOx-NP significantly impacts on the structural and hole-transport layer properties of the nanocomposite films, which in turn contributes to improve the photovoltaic performance of the corresponding devices. Thus, Sb2S3 ssSCs based on HTM with an optimum concentration of NiOx-NP in P3HT, i.e. P3HT:2% NiOx-NP, yield a 50% improvement in the power conversion efficiency relative to control devices fabricated with pristine P3HT. The improved hole separation and injection at the Sb2S3/HTM interface, determined by steady-state photoluminescence quenching and electrochemical impedance spectroscopy studies, correlate well with the higher hole mobility of the nanocomposite and the current density and fill factor enhancements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA