Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(13): e2305944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240370

RESUMO

Planar microelectrode arrays (MEAs) for - in vitro or in vivo - neuronal signal recordings lack the spatial resolution and sufficient signal-to-noise ratio (SNR) required for a detailed understanding of neural network function and synaptic plasticity. To overcome these limitations, a highly customizable three-dimensional (3D) printing process is used in combination with thin film technology and a self-aligned template-assisted electrochemical deposition process to fabricate 3D-printed-based MEAs on stiff or flexible substrates. Devices with design flexibility and physical robustness are shown for recording neural activity in different in vitro and in vivo applications, achieving high-aspect ratio 3D microelectrodes of up to 33:1. Here, MEAs successfully record neural activity in 3D neuronal cultures, retinal explants, and the cortex of living mice, thereby demonstrating the versatility of the 3D MEA while maintaining high-quality neural recordings. Customizable 3D MEAs provide unique opportunities to study neural activity under regular or various pathological conditions, both in vitro and in vivo, and contribute to the development of drug screening and neuromodulation systems that can accurately monitor the activity of large neural networks over time.


Assuntos
Neurônios , Impressão Tridimensional , Camundongos , Animais , Microeletrodos , Neurônios/fisiologia , Plasticidade Neuronal
2.
Sci Rep ; 10(1): 19836, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199768

RESUMO

The efforts to improve the treatment efficacy in blind patients with retinal degenerative diseases would greatly benefit from retinal activity feedback, which is lacking in current retinal implants. While the door for a bidirectional communication device that stimulates and records intraretinally has been opened by the recent use of silicon-based penetrating probes, the biological impact induced by the insertion of such rigid devices is still unknown. Here, we developed for the first time, flexible intraretinal probes and validated in vitro the acute biological insertion impact in mouse retinae compared to standard silicon-based probes. Our results show that probes based on flexible materials, such as polyimide and parylene-C, in combination with a narrow shank design 50 µm wide and 7 µm thick, and the use of insertion speeds as high as 187.5 µm/s will successfully penetrate the retina, reduce the footprint of the insertion to roughly 2 times the cross-section of the probe, and induce low dead cell counts, while keeping the vitality of the tissue and recording the neural activity at different depths.


Assuntos
Retina/fisiologia , Retina/cirurgia , Animais , Eletrodos Implantados , Desenho de Equipamento , Retroalimentação Fisiológica , Teste de Materiais , Camundongos , Microeletrodos , Imagens de Fantasmas , Maleabilidade , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA