Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2018: 6134787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853916

RESUMO

Mesenchymal stromal stem cells (MSC) that reside in the bone marrow (BM) can be amplified in vitro. In 2-dimension (D) cultures, MSC exhibit a morphology similar to fibroblasts, are able to inhibit T lymphocyte and natural killer cell proliferation, and can be differentiated into adipocytes, chondrocytes, or osteoblasts if exposed to specific media. Here we show that medullar MSC cultured in 2D formed an adherent stroma of cells expressing well-organized microfilaments containing α-smooth muscle actin and nonmuscle myosin heavy chain IIA. MSC could be grown in 3D in collagen membranes generating a structure which, upon exposition to 50 mM KCl or to an alternating electric current, developed a contractile strength that averaged 34 and 45 µN/mm2, respectively. Such mechanical tension was similar in intensity and in duration to that of human placenta and was annihilated by isosorbide dinitrate or 2,3-butanedione monoxime. Membranes devoid of MSC did not exhibit a significant contractility. Moreover, MSC nested in collagen membranes were able to control T lymphocyte proliferation, and differentiated into adipocytes, chondrocytes, or osteoblasts. Our observations show that BM-derived MSC cultured in collagen membranes spontaneously differentiate into contractile myofibroblasts exhibiting unexpected properties in terms of cell differentiation potential and of immunomodulatory function.

2.
Endocrinology ; 150(3): 1294-302, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18974265

RESUMO

Angiotensin II (AngII), potassium ion, and ACTH are the main factors controlling aldosterone biosynthesis in adrenal glomerulosa cells. AP-1 response elements for the immediate early gene products, c-Fos and c-Jun, have been identified, among others, in the promoter of the steroidogenic acute regulatory (StAR) protein gene, whose expression is acutely regulated by activators of aldosterone production. In bovine glomerulosa cells, AngII treatment led to a rapid and transient increase in c-fos mRNA expression, c-Fos protein expression, and c-Fos phosphorylation. Inhibition of the ERK1/2 MAPK pathway abolished the effect of AngII on c-fos mRNA, protein, and phosphorylation. EMSA and chromatin immunoprecipitation experiments demonstrated that c-Fos binds with c-Jun to the proximal StAR promoter and that AngII treatment increases the amount of c-Fos bound to the promoter. Overexpression of a dominant-negative form of c-Fos with adenoviral vectors inhibited StAR mRNA and StAR protein expression as well as aldosterone biosynthesis in response to AngII. The dominant-negative c-Fos also prevented the increase in protein synthesis induced by AngII in glomerulosa cells, as assessed by [(3)H]leucine incorporation. These results indicate that AngII rapidly induces c-Fos expression and posttranslational modifications. Furthermore, a heterodimeric c-Fos/c-Jun complex binds to the proximal StAR promoter in glomerulosa cells, thus activating StAR gene expression and acute aldosterone biosynthesis. Finally, c-Fos also contributes to other functional responses to the hormone, such as protein synthesis.


Assuntos
Aldosterona/metabolismo , Angiotensina II/farmacologia , Genes fos/fisiologia , Biossíntese de Proteínas , Zona Glomerulosa/metabolismo , Animais , Bovinos , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Zona Glomerulosa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...