Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(22): 15477-15483, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824769

RESUMO

Tropical cyclones are the most powerful storms on earth, causing catastrophic damage to human lives and infrastructure. Hurricanes also cause wildlife mortality when they make landfall, but the severity of these effects is difficult to quantify because data collection is either logistically impossible or deprioritized in the wake of human tragedy. On August 27, 2020, Hurricane Laura made landfall in southwestern Louisiana with maximum sustained winds of 241 kph (150 mph), making it one of the most powerful storms to strike the mainland United States. Hurricane Laura passed directly over the core breeding range of the western Gulf Coast population of Mottled Duck (Anas fulvigula), during a time when many adult birds were undergoing a simultaneous wing feather molt and were flightless. We used GPS-GSM telemetry data to evaluate survival rates of adult female Mottled Ducks in late summer 2020 (bracketing August 27 by one month on either side) relative to the same period in 2018 and 2019. Mortality was lower in 2018 (12 out of 29; 41%) and 2019 (8 out of 28; 29%) than in 2020 (12 out of 18; 67%), and 7 out of 12 mortalities documented in 2020 occurred when Hurricane Laura made landfall. Survival analyses in program MARK confirmed lower survival probability in 2020, but there was overlap in 85% confidence intervals in all years. This single storm resulted in the death of ~40% of all marked birds in our sample, suggesting that hurricanes have the potential to influence population demographics. In addition, Hurricane Laura resulted in widespread habitat loss and degradation that has reduced available nesting habitat in 2021, and possibly for years to come. The acute and chronic effects of hurricanes may exacerbate Mottled Duck population declines, which may worsen in the face of increasingly frequent and more severe tropical storms.

2.
Ecol Evol ; 9(4): 2121-2130, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847097

RESUMO

Birds should select nest sites that minimize predation risk, but understanding the influence of vegetation on nest survival has proven problematic. Specifically, the common practice of measuring vegetation on nest fate date can overestimate its effect on nest survival, simply because vegetation at hatched nests grows for a longer period of time than vegetation at nests that were depredated. Here, we sampled the literature to determine the prevalence of this bias in studies of duck breeding ecology. We then used survival data collected from ~2,800 duck nests to empirically evaluate evidence of bias in four different vegetation metrics: vegetation density measured when the nest was found, density when the nest was fated, and date-corrected regression residuals of these two. We also diagnosed the magnitude of vegetation effects on nest survival by restricting our analysis to only nests which were fated contemporaneously (thereby removing potential bias in the timing of measurement). Finally, we examined whether systematic phenological differences exist between vegetation at hatched and depredated nests that have the potential to further obfuscate the relationship between vegetation and nest survival. We found evidence for a true-positive effect of vegetation density on nest survival that appeared to be inflated when using raw vegetation measurements collected at fate date. However, taken in combination with the literature review, our results suggest that the majority of duck nesting studies have evaluated the role of vegetation on nest survival using a relatively less biased metric-vegetation density when the nest was found. Finally, we found that over the course of a nesting attempt, vegetation increased in density at successful nests, but decreased in density at depredated nests. As a consequence, duck researchers using vegetation data collected when the nest was found may actually be underestimating the magnitude of the effect. This seasonal change potentially points to an important new metric for understanding predation risk, but further experimental research is required to fully eliminate potential biases in the timing of vegetation measurements.

3.
Oecologia ; 169(3): 695-702, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22179311

RESUMO

When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for "dispersion-dependent" predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.


Assuntos
Corvos , Patos , Mephitidae/fisiologia , Comportamento Predatório , Guaxinins/fisiologia , Animais , Comportamento de Nidação , Óvulo , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...