Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25974482

RESUMO

Using a granular-mechanics code, we study the impact of a highly porous granular body on a hard wall. The projectile consists of monodisperse adhesive micrometer-sized silica grains. For the impact velocities studied, v<0.5m/s, the sample does not fragment, but is compacted. We find that the compaction is proportional to the impact speed. The proportionality constant increases with decreasing porosity. However, the compaction is inhomogeneous and decreases with distance from the target. A compaction wave runs through the aggregate; it slows down while the compaction becomes less efficient.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061313, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23367938

RESUMO

Using a granular-mechanics code, we study the impact of a sphere into a porous adhesive granular target, consisting of monodisperse silica grains. The model includes elastic repulsive, adhesive, and dissipative forces, as well as sliding, rolling, and twisting friction. Impact velocities of up to 30 m/s and target filling factors (densities) between 19% and 35% have been systematically studied. We find that the projectile is stopped by an effective drag force which is proportional to the square of its velocity. Target adhesion influences projectile stopping only below a critical velocity, which increases with adhesion. The penetration depth depends approximately logarithmically on the impact velocity and is inversely proportional to the target density. The excavated crater is of conical form and is surrounded by a compaction zone whose width increases but whose maximum value decreases with increasing target density. Grain ejection increases in proportion with impactor velocity. Grains are ejected which have originally been buried to a depth of 8R(grain) below the surface; the angular distribution favors oblique ejection with a maximum around 45°. The velocity distribution of ejected grains features a broad low-velocity maximum around 0.5-1 m/s but exhibits a high-velocity tail up to ~15% of the projectile impact velocity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...