Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21438, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293632

RESUMO

A network of gene regulatory factors such as transcription factors and microRNAs establish and maintain gene expression patterns during hematopoiesis. In this network, transcription factors regulate each other and are involved in regulatory loops with microRNAs. The microRNA cluster miR-17-92 is located within the MIR17HG gene and encodes six mature microRNAs. It is important for hematopoietic differentiation and plays a central role in malignant disease. However, the transcription factors downstream of miR-17-92 are largely elusive and the transcriptional regulation of miR-17-92 is not fully understood. Here we show that miR-17-92 forms a regulatory loop with the transcription factor TAL1. The miR-17-92 cluster inhibits expression of TAL1 and indirectly leads to decreased stability of the TAL1 transcriptional complex. We found that TAL1 and its heterodimerization partner E47 regulate miR-17-92 transcriptionally. Furthermore, miR-17-92 negatively influences erythroid differentiation, a process that depends on gene activation by the TAL1 complex. Our data give example of how transcription factor activity is fine-tuned during normal hematopoiesis. We postulate that disturbance of the regulatory loop between TAL1 and the miR-17-92 cluster could be an important step in cancer development and progression.


Assuntos
Células Eritroides/citologia , MicroRNAs/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Células HEK293 , Hematopoese , Humanos , Células Jurkat , Células K562 , Estabilidade Proteica , RNA Longo não Codificante , Proteína 1 de Leucemia Linfocítica Aguda de Células T/química , Fator 3 de Transcrição/metabolismo , Ativação Transcricional
2.
J Immunol ; 200(2): 857-868, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29229677

RESUMO

The enzyme 5-lipoxygenase (5-LO) is key in the synthesis of leukotrienes, which are potent proinflammatory lipid mediators involved in chronic inflammatory diseases including cancer. 5-LO is expressed in immune cells but also found in cancer cells. Although the role of 5-LO in tumor cells is beginning to emerge, with the notion that tumor-promoting functions are attributed to its products, the function of 5-LO in the tumor microenvironment remains unclear. To understand the role of 5-LO and its products in the tumor microenvironment, we analyzed its expression and function in tumor-associated macrophages (TAMs). TAMs were generated by coculturing primary human macrophages (MΦ) with human MCF-7 breast carcinoma cells, which caused cell death of cancer cells followed by phagocytosis of cell debris by MΦ. Expression and activity of 5-LO in TAMs were reduced upon coculture with cancer cells. Downregulation of 5-LO in TAMs required tumor cell death and the direct contact between MΦ and dying cancer cells via Mer tyrosine kinase. Subsequently, upregulation of proto-oncogene c-Myb in TAMs induced a stable transcriptional repression of 5-LO. Reduced 5-LO expression in TAMs was mechanistically coupled to an attenuated T cell recruitment. In primary TAMs from human and murine breast tumors, 5-LO expression was absent or low when compared with monocyte-derived MΦ. Our data reveal that 5-LO, which is required for leukotriene production and subsequent T cell recruitment, is downregulated in TAMs through Mer tyrosine kinase-dependent recognition of apoptotic cancer cells. Mechanistically, we noticed transcriptional repression of 5-LO by proto-oncogene c-Myb and conclude that loss of stromal 5-LO expression favors tumor progression.


Assuntos
Apoptose , Araquidonato 5-Lipoxigenase/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Araquidonato 5-Lipoxigenase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Cultivadas , Quimiotaxia de Leucócito/imunologia , Ativação Enzimática , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/patologia , Camundongos , Neoplasias/genética , Neoplasias/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcrição Gênica
3.
J Exp Med ; 214(9): 2695-2713, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28739604

RESUMO

Metastasis is the primary cause of cancer death. The inflammatory tumor microenvironment contributes to metastasis, for instance, by recruiting blood and lymph vessels. Among tumor-infiltrating immune cells, tumor-associated macrophages (TAMs) take a center stage in promoting both tumor angiogenesis and metastatic spread. We found that genetic deletion of the S1P receptor 1 (S1pr1) alone in CD11bhi CD206+ TAMs infiltrating mouse breast tumors prevents pulmonary metastasis and tumor lymphangiogenesis. Reduced lymphangiogenesis was also observed in the nonrelated methylcholanthrene-induced fibrosarcoma model. Transcriptome analysis of isolated TAMs from both entities revealed reduced expression of the inflammasome component Nlrp3 in S1PR1-deficient TAMs. Macrophage-dependent lymphangiogenesis in vitro was triggered upon inflammasome activation and required both S1PR1 signaling and IL-1ß production. Finally, NLRP3 expression in tumor-infiltrating macrophages correlated with survival, lymph node invasion, and metastasis of mammary carcinoma patients. Conceptually, our study indicates an unappreciated role of the NLRP3 inflammasome in promoting metastasis via the lymphatics downstream of S1PR1 signaling in macrophages.


Assuntos
Interleucina-1beta/fisiologia , Linfangiogênese/fisiologia , Macrófagos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Metástase Neoplásica/fisiopatologia , Receptores de Lisoesfingolipídeo/fisiologia , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Feminino , Fibrossarcoma/fisiopatologia , Humanos , Metástase Linfática , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Esfingosina-1-Fosfato
4.
Biochem Pharmacol ; 103: 74-84, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26774453

RESUMO

The human histamine H4 receptor (H4R) is a Gαi/o-coupled receptor which is mainly expressed on hematopoietic cells. Accordingly, the receptor is implicated in the pathology of various diseases such as autoimmune disorders, bronchial asthma and pruritus. Due to complicated receptor pharmacology, the lack of a reliable antibody and limited availability of primary cells expressing the receptor the physiology of this receptor is still poorly understood. Therefore, we aimed to assess absolute receptor mRNA expression and functionality (intracellular Ca(2+) release) in various human myeloid cell types such as granulocytes, monocytes, macrophages and dendritic cells (DCs). This was put into context with the expression of the H1R and H2R. In addition, the influence of various inflammatory stimuli on H4R expression was investigated in macrophages and monocyte-derived DCs. We found that classically activated macrophages treated with pro-inflammatory stimuli down-regulated histamine receptor mRNA expression as did LPS and zymosan A matured monocyte-derived DCs. In contrast, alternatively activated macrophages (IL-4 or IL-13) upregulated H2R and H4R expression compared to controls. Consistent with existing literature, we found eosinophils to be the major source of the H4R. Since availability of primary eosinophils is limited, we developed a cell model based on the differentiated eosinophilic cell line EOL-1, in which H4R pharmacology and physiology may be studied.


Assuntos
Células Mieloides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Polaridade Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Granulócitos/metabolismo , Humanos , Interleucina-3/farmacologia , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/metabolismo , Células Mieloides/citologia , Cultura Primária de Células , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/genética , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H4 , Zimosan/farmacologia
5.
J Immunol ; 196(4): 1579-90, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26783340

RESUMO

Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands. This conveys antiviral effects, activates other immune cells (NK cells, conventional DCs, B, and T cells), and causes the induction and expansion of a strong inflammatory response. pDCs are key players in various type I IFN-driven autoimmune diseases such as systemic lupus erythematosus or psoriasis, but pDCs are also involved in (anti-)tumor immunity. The sphingolipid sphingosine-1-phosphate (S1P) signals through five G-protein-coupled receptors (S1PR1-5) to regulate, among other activities, immune cell migration and activation. The present study shows that S1P stimulation of human, primary pDCs substantially decreases IFN-α production after TLR7/9 activation with different types of CpG oligodeoxynucleotides or tick-borne encephalitis vaccine, which occurred in an S1PR4-dependent manner. Mechanistically, S1PR4 activation preserves the surface expression of the human pDC-specific inhibitory receptor Ig-like transcript 7. We provide novel information that Ig-like transcript 7 is rapidly internalized upon receptor-mediated endocytosis of TLR7/9 ligands to allow high IFN-α production. This is antagonized by S1PR4 signaling, thus decreasing TLR-induced IFN-α secretion. At a functional level, attenuated IFN-α production failed to alter Ag-driven T cell proliferation in pDC-dependent T cell activation assays, but shifted cytokine production of T cells from a Th1 (IFN-γ) to a regulatory (IL-10) profile. In conclusion, S1PR4 agonists block human pDC activation and may therefore be a promising tool to restrict pathogenic IFN-α production.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon-alfa/biossíntese , Receptores Imunológicos/fisiologia , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Citocinas/biossíntese , Células Dendríticas/efeitos dos fármacos , Humanos , Interferon-alfa/imunologia , Interleucina-10/biossíntese , Ativação Linfocitária , Lisofosfolipídeos/imunologia , Lisofosfolipídeos/farmacologia , Oligodesoxirribonucleotídeos/farmacologia , Receptores Imunológicos/imunologia , Esfingosina/análogos & derivados , Esfingosina/imunologia , Esfingosina/farmacologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...