Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1225533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025262

RESUMO

The activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is a neuron-specific immediate early gene (IEG) product. The protein regulates synaptic strength through modulation of spine density and morphology, AMPA receptor endocytosis, and as being part of a retrovirus-like inter-cellular communication mechanism. However, little is known about the detailed subsynaptic localization of the protein, and especially its possible presynaptic localization. In the present study, we provide novel electron microscopical data of Arc localization at hippocampal Schaffer collateral synapses in the CA1 region. The protein was found in both pre-and postsynaptic cytoplasm in a majority of synapses, associated with small vesicles. We also observed multivesicular body-like structures positive for Arc. Furthermore, the protein was located over the presynaptic active zone and the postsynaptic density. The relative concentration of Arc was 25% higher in the postsynaptic spine than in the presynaptic terminal. Notably, small extracellular vesicles labeled for Arc were detected in the synaptic cleft or close to the synapse, supporting a possible transsynaptic transmission of the protein in the brain.

2.
Brain Res ; 1706: 125-134, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408477

RESUMO

The inositol 1,4,5-trisphosphate receptor (IP3R) subtype IP3R1 is highly enriched in the brain, including hippocampal neurons. It plays an important function in regulating intracellular calcium concentrations. Residing on the smooth endoplasmic reticulum (sER), the IP3R1 mobilizes calcium into the cytosol upon binding the intracellular signaling molecule IP3, whose concentration is increased by stimulating certain metabotropic glutamate receptors. Increased calcium may mediate synaptic changes occurring during long-term plasticity, which includes molecular mechanisms underlying memory encoding. The exact synaptic localization of IP3R1 in the central nervous system (CNS) remains unclear. We hypothesized that IP3R1, in addition to its known expression in soma and dendritic shafts of hippocampal CA1 pyramidal neurons, also may be present in postsynaptic spines. Moreover, we hypothesized that IP3R1 may be present in presynaptic terminals as well, given the importance of calcium in regulating presynaptic neurotransmitter exocytosis. To test these two hypotheses, we used IP3R1 immunocytochemistry at the light and electron microscopical levels in the CA1 area of the hippocampus. Furthermore, we hypothesized that induction of long-term potentiation (LTP) would be accompanied by an increase in synaptic IP3R1 concentrations, thereby facilitating synaptic mechanisms of long term plasticity. To investigate this, we used quantitative immunogold electron microscopy to determine possible changes in IP3R1 concentration in sub-synaptic compartments before and five minutes after high frequency tetanizations. Firstly, our data confirm localization of IP3R1 in both presynaptic terminals and postsynaptic spines. Secondly, the concentration of IP3R1 after tetanization was significantly increased in the presynaptic compartment, suggesting a presynaptic role of IP3R1 in early phases of synaptic plasticity. It is therefore possible that IP3R1 is involved in modulating neurotransmitter release by regulating calcium homeostasis presynaptically.


Assuntos
Região CA1 Hipocampal/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos , Neurônios/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
3.
Front Mol Neurosci ; 9: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26903802

RESUMO

Syntaxins are a family of membrane-integrated proteins that are instrumental in exocytosis of vesicles. Syntaxin-1 is an essential component of the presynaptic exocytotic fusion machinery in the brain and interacts with several other proteins. Syntaxin-1 forms a four-helical bundle complex with proteins SNAP-25 and VAMP2 that drives fusion of vesicles with the plasma membrane in the active zone (AZ). Little is known, however, about the ultrastructural localization of syntaxin-1 at the synapse. We have analyzed the intrasynaptic expression of syntaxin-1 in glutamatergic hippocampal synapses in detail by using quantitative postembedding immunogold labeling. Syntaxin-1 was present in highest concentrations at the presynaptic AZ, supporting its role in transmitter release. Presynaptic plasma membrane lateral to the AZ, as well as presynaptic cytoplasmic (PreCy) vesicles were also labeled. However, syntaxin-1 was also significantly expressed in postsynaptic spines, where it was localized at the postsynaptic density (PSD), at postsynaptic lateral membranes and in postsynaptic cytoplasm. Postsynaptically, syntaxin-1 colocalized in the nanometer range with the N-methyl-D-aspartate (NMDA) receptor subunit NR2B, but only weakly with the AMPA receptor subunits GluA2/3. This observation points to the possibility that syntaxin-1 may be involved with NR2B vesicular trafficking from cytoplasmic stores to the postsynaptic plasma membrane, thus facilitating synaptic plasticity. Confocal immunofluorescence double labeling with PSD-95 and ultrastructural fractionation of synaptosomes also confirm localization of syntaxin-1 at the PSD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA