Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Cancer ; 24(1): 370, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528445

RESUMO

BACKGROUND: Relapsed or refractory follicular lymphoma (rrFL) is an incurable disease associated with shorter remissions and survival after each line of standard therapy. Many promising novel, chemotherapy-free therapies are in development, but few are licensed as their role in current treatment pathways is poorly defined. METHODS: The REFRACT trial is an investigator-initiated, UK National Cancer Research Institute, open-label, multi-centre, randomised phase II platform trial aimed at accelerating clinical development of novel therapies by addressing evidence gaps. The first of the three sequential novel therapy arms is epcoritamab plus lenalidomide, to be compared with investigator choice standard therapy (ICT). Patients aged 18 years or older with biopsy proven relapsed or refractory CD20 positive, grade 1-3a follicular lymphoma and assessable disease by PET-CT are eligible. The primary outcome is complete metabolic response by PET-CT at 24 weeks using the Deauville 5-point scale and Lugano 2014 criteria. Secondary outcomes include overall metabolic response, progression-free survival, overall survival, duration of response, and quality of life assessed by EQ-5D-5 L and FACT-Lym. The trial employs an innovative Bayesian design with a target sample size of 284 patients: 95 in the ICT arm and 189 in the novel therapy arms. DISCUSSION: Whilst there are many promising novel drugs in early clinical development for rrFL, understanding the relative efficacy and safety of these agents, and their place in modern treatment pathways, is limited by a lack of randomised trials and dearth of published outcomes for standard regimens to act as historic controls. Therefore, the aim of REFRACT is to provide an efficient platform to evaluate novel agents against standard therapies for rrFL. The adaptive Bayesian power prior methodology design will minimise patient numbers and accelerate trial delivery. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05848765; 08-May-2023. EUDRACT: 2022-000677-75; 10-Feb-2022.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Braço/patologia , Teorema de Bayes , Qualidade de Vida , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto
2.
Blood Adv ; 8(5): 1167-1178, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38113463

RESUMO

ABSTRACT: Expression of ZAP-70 in a subset of patients with chronic lymphocytic leukemia (CLL) positively correlates with the absence of immunoglobulin heavy-chain gene (IGHV) mutations and is indicative of a more active disease and shorter treatment-free survival. We recently demonstrated that ZAP-70 regulates the constitutive expression of CCL3 and CCL4, activation of AKT, and expression of MYC in the absence of an overt B-cell receptor (BCR) signal, bona fide functions of BCR activation. We, here, provide evidence that these features relate to the presence of a constitutive tonic BCR signal, exclusively found in IGHV-unmutated CLL and dependent on the ZAP-70-mediated activation of AKT and its downstream target GSK-3ß. These findings are associated with increased steady-state activation of CD19 and SRC. Notably this tonic BCR signal is not present in IGHV-mutated CLL cells, discordantly expressing ZAP-70. Results of quantitative mass spectrometry and phosphoprotein analyses indicate that this ZAP-70-dependent, tonic BCR signal regulates CLL cell migration through phosphorylation of LCP1 on serine-5. Indeed, we show that CCL19- and CCL21-induced chemotaxis is regulated by and dependent on the expression of ZAP-70 through its function to enhance CCR7 signaling to LCP1. Thus, our data demonstrate that ZAP-70 converges a tonic BCR signal, exclusively present in IGHV-unmutated CLL and CCR7-mediated chemotaxis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Receptores CCR7/genética , Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais
3.
Cell Rep ; 42(10): 113017, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792532

RESUMO

Despite available targeted treatments for the disease, drug-resistant chronic lymphocytic leukemia (CLL) poses a clinical challenge. The objective of this study is to examine whether the dual-specific phosphatases DUSP1 and DUSP6 are required to negatively regulate mitogen-activated protein kinases (MAPKs) and thus counterbalance excessive MAPK activity. We show that high expression of DUSP6 in CLL correlates with poor clinical prognosis. Importantly, genetic deletion of the inhibitory phosphatase DUSP1 or DUSP6 and blocking DUSP1/6 function using a small-molecule inhibitor reduces CLL cell survival in vitro and in vivo. Using global phospho-proteome approaches, we observe acute activation of MAPK signaling by DUSP1/6 inhibition. This promotes accumulation of mitochondrial reactive oxygen species and, thereby, DNA damage and apoptotic cell death in CLL cells. Finally, we observe that DUSP1/6 inhibition is particularly effective against treatment-resistant CLL and therefore suggest transient DUSP1/6 inhibition as a promising treatment concept to eliminate drug-resistant CLL cells.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Retroalimentação , Proteínas Quinases Ativadas por Mitógeno
6.
Blood Adv ; 7(12): 2794-2806, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36696464

RESUMO

Patients with chronic lymphocytic leukemia (CLL) progressing on ibrutinib constitute an unmet need. Though Bruton tyrosine kinase (BTK) and PLCG2 mutations are associated with ibrutinib resistance, their frequency and relevance to progression are not fully understood. In this multicenter retrospective observational study, we analyzed 98 patients with CLL on ibrutinib (49 relapsing after an initial response and 49 still responding after ≥1 year of continuous treatment) using a next-generation sequencing (NGS) panel (1% sensitivity) comprising 13 CLL-relevant genes including BTK and PLCG2. BTK hotspot mutations were validated by droplet digital polymerase chain reaction (ddPCR) (0.1% sensitivity). By integrating NGS and ddPCR results, 32 of 49 relapsing cases (65%) carried at least 1 hotspot BTK and/or PLCG2 mutation(s); in 6 of 32, BTK mutations were only detected by ddPCR (variant allele frequency [VAF] 0.1% to 1.2%). BTK/PLCG2 mutations were also identified in 6 of 49 responding patients (12%; 5/6 VAF <10%), of whom 2 progressed later. Among the relapsing patients, the BTK-mutated (BTKmut) group was enriched for EGR2 mutations, whereas BTK-wildtype (BTKwt) cases more frequently displayed BIRC3 and NFKBIE mutations. Using an extended capture-based panel, only BRAF and IKZF3 mutations showed a predominance in relapsing cases, who were enriched for del(8p) (n = 11; 3 BTKwt). Finally, no difference in TP53 mutation burden was observed between BTKmut and BTKwt relapsing cases, and ibrutinib treatment did not favor selection of TP53-aberrant clones. In conclusion, we show that BTK/PLCG2 mutations were absent in a substantial fraction (35%) of a real-world cohort failing ibrutinib, and propose additional mechanisms contributing to resistance.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Resistencia a Medicamentos Antineoplásicos/genética , Piperidinas , Recidiva
7.
Nat Commun ; 13(1): 6220, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266281

RESUMO

Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-γ signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.


Assuntos
Linfoma , Receptor Notch1 , Humanos , Receptor Notch1/metabolismo , Antígeno B7-H1/metabolismo , Interferon gama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Transdução de Sinais , Receptor Notch2/genética , Receptor Notch2/metabolismo , Linfoma/genética
8.
Nat Commun ; 13(1): 4674, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945217

RESUMO

The MYC oncogene is a potent driver of growth and proliferation but also sensitises cells to apoptosis, which limits its oncogenic potential. MYC induces several biosynthetic programmes and primary cells overexpressing MYC are highly sensitive to glutamine withdrawal suggesting that MYC-induced sensitisation to apoptosis may be due to imbalance of metabolic/energetic supply and demand. Here we show that MYC elevates global transcription and translation, even in the absence of glutamine, revealing metabolic demand without corresponding supply. Glutamine withdrawal from MRC-5 fibroblasts depletes key tricarboxylic acid (TCA) cycle metabolites and, in combination with MYC activation, leads to AMP accumulation and nucleotide catabolism indicative of energetic stress. Further analyses reveal that glutamine supports viability through TCA cycle energetics rather than asparagine biosynthesis and that TCA cycle inhibition confers tumour suppression on MYC-driven lymphoma in vivo. In summary, glutamine supports the viability of MYC-overexpressing cells through an energetic rather than a biosynthetic mechanism.


Assuntos
Apoptose , Glutamina , Apoptose/genética , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Fibroblastos/metabolismo , Glutamina/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
Cancers (Basel) ; 14(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406544

RESUMO

Transforming growth factor-beta (TGFB) is a critical regulator of normal haematopoiesis. Dysregulation of the TGFB pathway is associated with numerous haematological malignancies including myelofibrosis, acute myeloid leukaemia, and lymphoid disorders. TGFB has classically been seen as a negative regulator of proliferation in haematopoiesis whilst stimulating differentiation and apoptosis, as required to maintain homeostasis. Tumours frequently develop intrinsic resistant mechanisms to homeostatic TGFB signalling to antagonise its tumour-suppressive functions. Furthermore, elevated levels of TGFB enhance pathogenesis through modulation of the immune system and tumour microenvironment. Here, we review recent advances in the understanding of TGFB signalling in B-cell malignancies with a focus on the tumour microenvironment. Malignant B-cells harbour subtype-specific alterations in TGFB signalling elements including downregulation of surface receptors, modulation of SMAD signalling proteins, as well as genetic and epigenetic aberrations. Microenvironmental TGFB generates a protumoural niche reprogramming stromal, natural killer (NK), and T-cells. Increasingly, evidence points to complex bi-directional cross-talk between cells of the microenvironment and malignant B-cells. A greater understanding of intercellular communication and the context-specific nature of TGFB signalling may provide further insight into disease pathogenesis and future therapeutic strategies.

10.
Nat Cancer ; 2(8): 853-864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34423310

RESUMO

Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery across multiple data types and applied it to genomic, transcriptomic, DNA methylation and ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to the known biomarkers. We validated its presence and clinical relevance in four independent cohorts (n=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells, as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of mTOR-MYC-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table integration approach may be applicable to other tumors whose inter-individual differences are currently unexplained.


Assuntos
Leucemia Linfocítica Crônica de Células B , Metilação de DNA/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Fosforilação Oxidativa , Proteômica , Serina-Treonina Quinases TOR/genética
11.
Nat Commun ; 12(1): 3526, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112805

RESUMO

Current therapeutic approaches for chronic lymphocytic leukemia (CLL) focus on the suppression of oncogenic kinase signaling. Here, we test the hypothesis that targeted hyperactivation of the phosphatidylinositol-3-phosphate/AKT (PI3K/AKT)-signaling pathway may be leveraged to trigger CLL cell death. Though counterintuitive, our data show that genetic hyperactivation of PI3K/AKT-signaling or blocking the activity of the inhibitory phosphatase SH2-containing-inositol-5'-phosphatase-1 (SHIP1) induces acute cell death in CLL cells. Our mechanistic studies reveal that increased AKT activity upon inhibition of SHIP1 leads to increased mitochondrial respiration and causes excessive accumulation of reactive oxygen species (ROS), resulting in cell death in CLL with immunogenic features. Our results demonstrate that CLL cells critically depend on mechanisms to fine-tune PI3K/AKT activity, allowing sustained proliferation and survival but avoid ROS-induced cell death and suggest transient SHIP1-inhibition as an unexpectedly promising concept for CLL therapy.


Assuntos
Morte Celular/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Humanos , Imuno-Histoquímica , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transplante Homólogo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Leuk Lymphoma ; 62(10): 2342-2351, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33955326

RESUMO

Acalabrutinib is a highly selective, potent, next-generation, covalent Bruton tyrosine kinase inhibitor with minimal off-target activity. Matching-adjusted indirect comparisons (MAICs) were performed to estimate the safety and efficacy of acalabrutinib compared to other targeted therapies for treatment-naïve patients with chronic lymphocytic leukemia (CLL). Individual patient data for acalabrutinib (ELEVATE-TN trial) were matched to aggregate baseline characteristics for comparators. After matching, acalabrutinib (with or without obinutuzumab) showed improved safety outcomes, except for increased risk of neutropenia (p < 0.001) for acalabrutinib plus obinutuzumab versus ibrutinib and increased risk of leukopenia (p < 0.05) for acalabrutinib (with or without obinutuzumab) versus venetoclax plus obinutuzumab. There was no statistically significant difference in progression-free survival between acalabrutinib (with or without obinutuzumab) and any of the comparators. This MAIC demonstrated a favorable safety profile for acalabrutinib-based therapy compared with other targeted therapies in treatment-naïve patients with CLL, without compromising efficacy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Benzamidas/efeitos adversos , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirazinas/efeitos adversos , Pirimidinas/efeitos adversos
14.
Blood ; 137(26): 3629-3640, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619528

RESUMO

The expression of ZAP-70 in a subset of chronic lymphocytic leukemia (CLL) patients strongly correlates with a more aggressive clinical course, although the exact underlying mechanisms remain elusive. The ability of ZAP-70 to enhance B-cell receptor (BCR) signaling, independently of its kinase function, is considered to contribute. We used RNA-sequencing and proteomic analyses of primary cells differing only in their expression of ZAP-70 to further define how ZAP-70 increases the aggressiveness of CLL. We identified that ZAP-70 is directly required for cell survival in the absence of an overt BCR signal, which can compensate for ZAP-70 deficiency as an antiapoptotic signal. In addition, the expression of ZAP-70 regulates the transcription of factors regulating the recruitment and activation of T cells, such as CCL3, CCL4, and IL4I1. Quantitative mass spectrometry of double-cross-linked ZAP-70 complexes further demonstrated constitutive and direct protein-protein interactions between ZAP-70 and BCR-signaling components. Unexpectedly, ZAP-70 also binds to ribosomal proteins, which is not dependent on, but is further increased by, BCR stimulation. Importantly, decreased expression of ZAP-70 significantly reduced MYC expression and global protein synthesis, providing evidence that ZAP-70 contributes to translational dysregulation in CLL. In conclusion, ZAP-70 constitutively promotes cell survival, microenvironment interactions, and protein synthesis in CLL cells, likely to improve cellular fitness and to further drive disease progression.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas , Proteína-Tirosina Quinase ZAP-70/metabolismo , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Proteínas de Neoplasias/genética , Células Tumorais Cultivadas , Proteína-Tirosina Quinase ZAP-70/genética
16.
Front Oncol ; 10: 595832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194762

RESUMO

Zeta-chain-associated protein kinase-70 (ZAP-70) is a tyrosine kinase mainly expressed in T cells, NK cells and a subset of B cells. Primarily it functions in T cell receptor (TCR) activation through its tyrosine kinase activity. Aberrant expression of ZAP-70 has been evidenced in different B cell malignancies, with high expression of ZAP-70 in a subset of patients with Chronic Lymphocytic Leukemia (CLL), associating with unfavorable disease outcomes. Previous studies to understand the mechanisms underlying this correlation have been focused on tumor intrinsic mechanisms, including the activation of B cell receptor (BCR) signaling. Recent evidence also suggests that ZAP-70, intrinsically expressed in tumor cells, can modulate the cross-talk between malignant B cells and the immune environment, implying a more complex role of ZAP-70 in the pathogenesis of B cell malignancies. Meanwhile, the indispensible roles of ZAP-70 in T cell and NK cell activation also demonstrate that the autologous expression of ZAP-70 in the immune environment can be a central target in modulation of tumor immunity. Here we review the evidences of the link between ZAP-70 and tumor immunology in the microenvironment in B cell malignancies. Considering an emerging role of immunotherapies in treating these conditions, understanding the distinct molecular functions of ZAP-70 in a broader cellular context could ultimately benefit patient care.

17.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098106

RESUMO

All B cell leukaemias and a substantial fraction of lymphomas display a natural niche residency in the bone marrow. While the bone marrow compartment may only be one of several sites of disease manifestations, the strong clinical significance of minimal residual disease (MRD) in the bone marrow strongly suggests that privileged niches exist in this anatomical site favouring central elements of malignant transformation. Here, the co-existence of two hierarchical systems, originating from haematopoietic and mesenchymal stem cells, has extensively been characterised with regard to regulation of the former (blood production) by the latter. How these two systems cooperate under pathological conditions is far less understood and is the focus of many current investigations. More recent single-cell sequencing techniques have now identified an unappreciated cellular heterogeneity of the bone marrow microenvironment. How each of these cell subtypes interact with each other and regulate normal and malignant haematopoiesis remains to be investigated. Here we review the evidences of how bone marrow stroma cells and malignant B cells reciprocally interact. Evidently from published data, these cell-cell interactions induce profound changes in signalling, gene expression and metabolic adaptations. While the past research has largely focussed on understanding changes imposed by stroma- on tumour cells, it is now clear that tumour-cell contact also has fundamental ramifications for the biology of stroma cells. Their careful characterisations are not only interesting from a scientific biological viewpoint but also relevant to clinical practice: Since tumour cells heavily depend on stroma cells for cell survival, proliferation and dissemination, interference with bone marrow stroma-tumour interactions bear therapeutic potential. The molecular characterisation of tumour-stroma interactions can identify new vulnerabilities, which could be therapeutically exploited.


Assuntos
Comunicação Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Leucemia de Células B/imunologia , Células-Tronco Mesenquimais/imunologia , Microambiente Tumoral/imunologia , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia de Células B/patologia , Células-Tronco Mesenquimais/patologia , Células Estromais/imunologia , Células Estromais/patologia
18.
Sci Transl Med ; 12(526)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941829

RESUMO

Overcoming drug resistance remains a key challenge to cure patients with acute and chronic B cell malignancies. Here, we describe a stromal cell-autonomous signaling pathway, which contributes to drug resistance of malignant B cells. We show that protein kinase C (PKC)-ß-dependent signals from bone marrow-derived stromal cells markedly decrease the efficacy of cytotoxic therapies. Conversely, small-molecule PKC-ß inhibitors antagonize prosurvival signals from stromal cells and sensitize tumor cells to targeted and nontargeted chemotherapy, resulting in enhanced cytotoxicity and prolonged survival in vivo. Mechanistically, stromal PKC-ß controls the expression of adhesion and matrix proteins, required for activation of phosphoinositide 3-kinases (PI3Ks) and the extracellular signal-regulated kinase (ERK)-mediated stabilization of B cell lymphoma-extra large (BCL-XL) in tumor cells. Central to the stroma-mediated drug resistance is the PKC-ß-dependent activation of transcription factor EB, regulating lysosome biogenesis and plasma membrane integrity. Stroma-directed therapies, enabled by direct inhibition of PKC-ß, enhance the effectiveness of many antileukemic therapies.


Assuntos
Proteína Quinase C beta/metabolismo , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Tumorais Cultivadas
19.
Nat Commun ; 9(1): 3839, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242258

RESUMO

The Wnt signalling pathway, one of the core de-regulated pathways in chronic lymphocytic leukaemia (CLL), is activated in only a subset of patients through somatic mutations. Here we describe alternative, microenvironment-dependent mechanisms of Wnt activation in malignant B cells. We show that tumour cells specifically induce Notch2 activity in mesenchymal stromal cells (MSCs) required for the transcription of the complement factor C1q. MSC-derived C1q in turn inhibits Gsk3-ß mediated degradation of ß-catenin in CLL cells. Additionally, stromal Notch2 activity regulates N-cadherin expression in CLL cells, which interacts with and further stabilises ß-catenin. Together, these stroma Notch2-dependent mechanisms induce strong activation of canonical Wnt signalling in CLL cells. Pharmacological inhibition of the Wnt pathway impairs microenvironment-mediated survival of tumour cells. Similarly, inhibition of Notch signalling diminishes survival of stroma-protected CLL cells in vitro and disease engraftment in vivo. Notch2 activation in the microenvironment is a pre-requisite for the activation of canonical Wnt signalling in tumour cells.


Assuntos
Células da Medula Óssea/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor Notch2/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular , Reprogramação Celular , Humanos , Camundongos , Receptor Cross-Talk , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...