Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38457316

RESUMO

Efficient optimization of operation room (OR) activity poses a significant challenge for hospital managers due to the complex and risky nature of the environment. The traditional "one size fits all" approach to OR scheduling is no longer practical, and personalized medicine is required to meet the diverse needs of patients, care providers, medical procedures, and system constraints within limited resources. This paper aims to introduce a scientific and practical tool for predicting surgery durations and improving OR performance for maximum benefit to patients and the hospital. Previous works used machine-learning models for surgery duration prediction based on preoperative data. The models consider covariates known to the medical staff at the time of scheduling the surgery. However, model selection becomes crucial, where the number of covariates used for prediction depend on the available sample size. Our proposed approach utilizes multitask regression to select a common subset of predicting covariates for all tasks with the same sample size while allowing the model's coefficients to vary between them. A regression task can refer to a single surgeon or operation type or the interaction between them. By considering these diverse factors, our method provides an overall more accurate estimation of the surgery durations, and the selected covariates that enter the model may help to identify the resources required for a specific surgery. We found that when the regression tasks were surgeon-based or based on the pair of operation type and surgeon, our suggested approach outperformed the compared baseline suggested in a previous study. However, our approach failed to reach the baseline for an operation type-based task. By accurately estimating surgery durations, hospital managers can provide care to a greater number of patients, optimize resource allocation and utilization, and reduce waste. This research contributes to the advancement of personalized medicine and provides a valuable tool for improving operational efficiency in the dynamic world of medicine.

2.
J Stat Plan Inference ; 141(8): 2633-2644, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21643478

RESUMO

The theoretical literature on quantile and distribution function estimation in infinite populations is very rich, and invariance plays an important role in these studies. This is not the case for the commonly occurring problem of estimation of quantiles in finite populations. The latter is more complicated and interesting because an optimal strategy consists not only of an estimator, but also of a sampling design, and the estimator may depend on the design and on the labels of sampled individuals, whereas in iid sampling, design issues and labels do not exist.We study estimation of finite population quantiles, with emphasis on estimators that are invariant under the group of monotone transformations of the data, and suitable invariant loss functions. Invariance under the finite group of permutation of the sample is also considered. We discuss nonrandomized and randomized estimators, best invariant and minimax estimators, and sampling strategies relative to different classes. Invariant loss functions and estimators in finite population sampling have a nonparametric flavor, and various natural combinatorial questions and tools arise as a result.

3.
PLoS Genet ; 7(2): e1001302, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347283

RESUMO

In Drosophila, multiple lines of evidence converge in suggesting that beneficial substitutions to the genome may be common. All suffer from confounding factors, however, such that the interpretation of the evidence-in particular, conclusions about the rate and strength of beneficial substitutions-remains tentative. Here, we use genome-wide polymorphism data in D. simulans and sequenced genomes of its close relatives to construct a readily interpretable characterization of the effects of positive selection: the shape of average neutral diversity around amino acid substitutions. As expected under recurrent selective sweeps, we find a trough in diversity levels around amino acid but not around synonymous substitutions, a distinctive pattern that is not expected under alternative models. This characterization is richer than previous approaches, which relied on limited summaries of the data (e.g., the slope of a scatter plot), and relates to underlying selection parameters in a straightforward way, allowing us to make more reliable inferences about the prevalence and strength of adaptation. Specifically, we develop a coalescent-based model for the shape of the entire curve and use it to infer adaptive parameters by maximum likelihood. Our inference suggests that ∼13% of amino acid substitutions cause selective sweeps. Interestingly, it reveals two classes of beneficial fixations: a minority (approximately 3%) that appears to have had large selective effects and accounts for most of the reduction in diversity, and the remaining 10%, which seem to have had very weak selective effects. These estimates therefore help to reconcile the apparent conflict among previously published estimates of the strength of selection. More generally, our findings provide unequivocal evidence for strongly beneficial substitutions in Drosophila and illustrate how the rapidly accumulating genome-wide data can be leveraged to address enduring questions about the genetic basis of adaptation.


Assuntos
Adaptação Biológica/genética , Substituição de Aminoácidos/genética , Drosophila/genética , Evolução Molecular , Animais , Sequência de Bases , Mapeamento Cromossômico , Drosophila melanogaster/genética , Variação Genética , Genoma de Inseto , Dados de Sequência Molecular , Polimorfismo Genético , Seleção Genética/genética
4.
Genome Res ; 20(11): 1558-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20817943

RESUMO

How much does the intensity of purifying selection vary among populations and species? How uniform are the shifts in selective pressures across the genome? To address these questions, we took advantage of a recent, whole-genome polymorphism data set from two closely related species of yeast, Saccharomyces cerevisiae and S. paradoxus, paying close attention to the population structure within these species. We found that the average intensity of purifying selection on amino acid sites varies markedly among populations and between species. As expected in the presence of extensive weakly deleterious mutations, the effect of purifying selection is substantially weaker on single nucleotide polymorphisms (SNPs) segregating within populations than on SNPs fixed between population samples. Also in accordance with a Nearly Neutral model, the variation in the intensity of purifying selection across populations corresponds almost perfectly to simple measures of their effective size. As a first step toward understanding the processes generating these patterns, we sought to tease apart the relative importance of systematic, genome-wide changes in the efficacy of selection, such as those expected from demographic processes and of gene-specific changes, which may be expected after a shift in selective pressures. For that purpose, we developed a new model for the evolution of purifying selection between populations and inferred its parameters from the genome-wide data using a likelihood approach. We found that most, but not all changes seem to be explained by systematic shifts in the efficacy of selection. One population, the sake-derived strains of S. cerevisiae, however, also shows extensive gene-specific changes, plausibly associated with domestication. These findings have important implications for our understanding of purifying selection as well as for estimates of the rate of molecular adaptation in yeast and in other species.


Assuntos
Especiação Genética , Genoma Fúngico/genética , Polimorfismo de Nucleotídeo Único , Saccharomyces/genética , Seleção Genética/fisiologia , Análise de Sequência de DNA/métodos , Evolução Molecular , Geografia , Modelos Biológicos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/fisiologia , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...