Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 28(8): 1701-1711, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35115306

RESUMO

PURPOSE: To characterize changes in the soft-tissue sarcoma (STS) tumor immune microenvironment induced by standard neoadjuvant therapy with the goal of informing neoadjuvant immunotherapy trial design. EXPERIMENTAL DESIGN: Paired pre- and postneoadjuvant therapy specimens were retrospectively identified for 32 patients with STSs and analyzed by three modalities: multiplexed IHC, NanoString, and RNA sequencing with ImmunoPrism analysis. RESULTS: All 32 patients, representing a variety of STS histologic subtypes, received neoadjuvant radiotherapy and 21 (66%) received chemotherapy prior to radiotherapy. The most prevalent immune cells in the tumor before neoadjuvant therapy were myeloid cells (45% of all immune cells) and B cells (37%), with T (13%) and natural killer (NK) cells (5%) also present. Neoadjuvant therapy significantly increased the total immune cells infiltrating the tumors across all histologic subtypes for patients receiving neoadjuvant radiotherapy with or without chemotherapy. An increase in the percentage of monocytes and macrophages, particularly M2 macrophages, B cells, and CD4+ T cells was observed postneoadjuvant therapy. Upregulation of genes and cytokines associated with antigen presentation was also observed, and a favorable pathologic response (≥90% necrosis postneoadjuvant therapy) was associated with an increase in monocytic infiltrate. Upregulation of the T-cell checkpoint TIM3 and downregulation of OX40 were observed posttreatment. CONCLUSIONS: Standard neoadjuvant therapy induces both immunostimulatory and immunosuppressive effects within a complex sarcoma microenvironment dominated by myeloid and B cells. This work informs ongoing efforts to incorporate immune checkpoint inhibitors and novel immunotherapies into the neoadjuvant setting for STSs.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Imunidade , Terapia Neoadjuvante , Prognóstico , Estudos Retrospectivos , Sarcoma/tratamento farmacológico , Sarcoma/terapia , Microambiente Tumoral
2.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465597

RESUMO

BACKGROUND: Dedifferentiated liposarcoma (DDLPS) is one of the most common soft tissue sarcoma subtypes and is devastating in the advanced/metastatic stage. Despite the observation of clinical responses to PD-1 inhibitors, little is known about the immune microenvironment in relation to patient prognosis. METHODS: We performed a retrospective study of 61 patients with DDLPS. We completed deep sequencing of the T-cell receptor (TCR) ß-chain and RNA sequencing for predictive modeling, evaluating both immune markers and tumor escape genes. Hierarchical clustering and recursive partitioning were employed to elucidate relationships of cellular infiltrates within the tumor microenvironment, while an immune score for single markers was created as a predictive tool. RESULTS: Although many DDLPS samples had low TCR clonality, high TCR clonality combined with low T-cell fraction predicted lower 3-year overall survival (p=0.05). Higher levels of CD14+ monocytes (p=0.02) inversely correlated with 3-year recurrence-free survival (RFS), while CD4+ T-cell infiltration (p=0.05) was associated with a higher RFS. Genes associated with longer RFS included PD-1 (p=0.003), ICOS (p=0.006), BTLA (p=0.033), and CTLA4 (p=0.02). In a composite immune score, CD4+ T cells had the strongest positive predictive value, while CD14+ monocytes and M2 macrophages had the strongest negative predictive values. CONCLUSIONS: Immune cell infiltration predicts clinical outcome in DDLPS, with CD4+ cells associated with better outcomes; CD14+ cells and M2 macrophages are associated with worse outcomes. Future checkpoint inhibitor studies in DDLPS should incorporate immunosequencing and gene expression profiling techniques that can generate immune landscape profiles.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Macrófagos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Lipossarcoma , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados da Assistência ao Paciente , Estudos Retrospectivos , Adulto Jovem
3.
Cancer Prev Res (Phila) ; 12(8): 507-516, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31101634

RESUMO

In order to translate new treatments to the clinic, it is necessary to use animal models that closely recapitulate human disease. Lung cancer develops after extended exposure to carcinogens. It has one of the highest mutation rates of all cancer and is highly heterogenic. Topical treatment with N-nitrosotris-(2-chloroethyl)urea (NTCU) induces lung squamous cell carcinoma (SCC) with nonsynonymous mutation rates similar to those reported for human non-small cell lung cancer. However, NTCU induces lung cancer with variable efficacy and toxicity depending on the mouse strain. A detailed characterization of the NTCU model is needed. We have compared the effect of three different NTCU doses (20, 30, and 40 mmol/L) in female and male of NIH Swiss, Black Swiss, and FVB mice on tumor incidence, survival, and toxicity. The main findings in this study are (1) NIH Swiss mice present with a higher incidence of SCC and lower mortality compared with Black Swiss and FVB mice; (2) 30 mmol/L NTCU dose induces SCC at the same rate and incidence as the 40 mmol/L dose with lower mortality; (3) female mice present higher grade and incidence of preinvasive lesions and SCC compared with males; (4) NTCU-induced transformation is principally within the respiratory system; and (5) NTCU treatment does not affect the ability to elicit a specific adaptive immune response. This study provides a reference point for experimental designs to evaluate either preventive or therapeutic treatments for lung SCC, including immunotherapies, before initiating human clinical trials.


Assuntos
Carcinógenos/toxicidade , Carcinoma de Células Escamosas/epidemiologia , Neoplasias Pulmonares/epidemiologia , Pulmão/patologia , Animais , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/patologia , Carmustina/análogos & derivados , Carmustina/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Relação Dose-Resposta a Droga , Feminino , Incidência , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/epidemiologia , Neoplasias Experimentais/patologia , Fatores de Risco , Fatores Sexuais
4.
Virology ; 518: 184-194, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29524834

RESUMO

The T1 parvovirus Minute Virus of Mice (MVM) was used to study the roles that phosphorylation and N-terminal domains (Nt) configuration of capsid subunits may play in icosahedral nuclear viruses assembly. In synchronous MVM infection, capsid subunits newly assembled as two types of cytoplasmic trimeric intermediates (3VP2, and 1VP1:2VP2) harbored a VP1 phosphorylation level fivefold higher than that of VP2, and hidden Nt. Upon nuclear translocation at S phase, VP1-Nt became exposed in the heterotrimer and subsequent subviral assembly intermediates. Empty capsid subunits showed a phosphorylation level restored to VP1:VP2 stoichiometry, and the Nt concealed in their interior. However ssDNA-filled virus maturing at S/G2 lacked VP1 phosphorylation and one major VP2 phosphopeptide, and exposed VP2-Nt. Endosomal VP2-Nt cleavage resulted in VP3 subunits devoid of any phospholabel, implying that incoming viral particles specifically harbor a low phosphorylation status. Phosphorylation provides a mechanistic coupling of parvovirus nuclear assembly to the cell cycle.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus Miúdo do Camundongo/fisiologia , Montagem de Vírus/fisiologia , Animais , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Linhagem Celular , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Camundongos , Vírus Miúdo do Camundongo/genética , Fosforilação , Domínios Proteicos , Subunidades Proteicas , Coelhos
5.
Nat Biotechnol ; 35(8): 765-772, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28504668

RESUMO

Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.


Assuntos
Antígenos HLA/imunologia , Células Matadoras Naturais/imunologia , Células-Tronco Pluripotentes/imunologia , Transplantes/imunologia , Animais , Feminino , Rejeição de Enxerto/imunologia , Antígenos HLA/química , Antígenos HLA/genética , Humanos , Camundongos , Células-Tronco Pluripotentes/química , Células-Tronco Pluripotentes/citologia , Transplantes/química , Transplantes/citologia
6.
PLoS Pathog ; 11(6): e1004920, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26067441

RESUMO

It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/ß1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues.


Assuntos
Capsídeo/virologia , Ciclo Celular/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Vírus Miúdo do Camundongo/fisiologia , Infecções por Parvoviridae/virologia , Montagem de Vírus/fisiologia , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo , Linhagem Celular , Núcleo Celular/virologia , Fibroblastos/virologia , Citometria de Fluxo , Imunofluorescência , Humanos , Camundongos
7.
Mol Ther ; 21(6): 1232-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23629003

RESUMO

The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I-negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8(+) T cell responses were reduced in class I-negative cells that had undergone differentiation in embryoid bodies. These B2M(-/-) ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines.


Assuntos
Antígenos HLA/genética , Células-Tronco Pluripotentes/citologia , Alelos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Dependovirus/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Marcação de Genes , Engenharia Genética , Vetores Genéticos , Antígenos HLA/metabolismo , Haplótipos , Histocompatibilidade/genética , Homozigoto , Humanos , Células-Tronco Pluripotentes/metabolismo , Recombinação Genética , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
8.
J Virol ; 84(4): 2090-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939915

RESUMO

The central role of Raf protein kinase isoforms in human cancer demands specific anti-Raf therapeutic inhibitors. Parvoviruses are currently used in experimental cancer therapy due to their natural oncotropism and lytic life cycle. In searching for mechanisms underlying parvovirus oncolysis, we found that trimers of the major structural protein (VP) of the parvovirus minute virus of mice (MVM), which have to be imported into the nucleus for capsid assembly, undergo phosphorylation by the Raf-1 kinase. Purified Raf-1 phosphorylated the capsid subunits in vitro to the two-dimensional pattern found in natural MVM infections. VP trimers isolated from mammalian cells translocated into the nucleus of digitonin-permeabilized human cells. In contrast, VP trimers isolated from insect cells, which are devoid of Raf-1, were neither phosphorylated nor imported into the mammalian nucleus. However, the coexpression of a constitutively active Raf-1 kinase in insect cells restored VP trimer phosphorylation and nuclear transport competence. In MVM-infected normal and transformed cells, Raf-1 inhibition resulted in cytoplasmic retention of capsid proteins, preventing their nuclear assembly and progeny virus maturation. The level of Raf-1 activity in cancer cells was consistent with the extent of VP specific phosphorylation and with the permissiveness to MVM infection. Thus, Raf-1 control of nuclear translocation of MVM capsid assembly intermediates provides a novel target for viral oncolysis. MVM may reinforce specific therapies against frequent human cancers with deregulated Raf signaling.


Assuntos
Vírus Miúdo do Camundongo/fisiologia , Vírus Oncolíticos/fisiologia , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Viral , Células HeLa , Humanos , Camundongos , Vírus Miúdo do Camundongo/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Fosforilação , Estrutura Quaternária de Proteína , Subunidades Proteicas , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Spodoptera , Montagem de Vírus
9.
J Mol Biol ; 357(3): 1026-38, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16469332

RESUMO

The connection between nuclear transport and morphogenesis of a large macromolecular entity has been investigated using the karyophylic capsid of the parvovirus minute virus of mice (MVM) as a model. The VP1 (82 kDa) and VP2 (63 kDa) proteins forming the T = 1 icosahedral MVM capsid at the respective 1:5 molar ratio of synthesis, could be covalently cross-linked with dimethyl suberimidate into two types of oligomeric assemblies, which were present at stoichiometric amounts in infected cell extracts and purified viral particles. The larger species contained VP1 and corresponded in size (200 kDa) to a heterotrimer of one VP1 and two VP2 subunits. The smaller species contained VP2 only and corresponded in size (180 kDa) to a homotrimer. The introduction of bulky residues or the truncation of side-chains involved in multiple interactions at the interfaces between trimers of VPs in the MVM capsid, produced the accumulation of trimeric intermediates that were competent in nuclear translocation but not in capsid assembly. These results indicate that MVM maturation proceeds by cytoplasmic oligomerization of the capsid subunits into two types of trimers, which are the assembly intermediates competent to translocate across the nuclear membrane. Consistent with this conclusion, mutations at basic residues that inactivate a previously identified beta-stranded nuclear localization motif, which notably are not involved in inter or intra-subunit contacts, led to cytoplasmic retention of the two types of trimers, with no evidence for other assembly intermediates. Although a fraction of the VP1-containing trimers were translocated into the nucleus driven by the conventional nuclear transport signal of VP1 N terminus, their further assembly in the absence of the VP2-only trimers yielded large molecular mass amorphous aggregates. Therefore, the nuclear transport stoichiometry of assembly intermediates may exert a morphogenetic quality control on macromolecular complexes like the MVM capsid.


Assuntos
Capsídeo/metabolismo , Núcleo Celular/metabolismo , Vírus Miúdo do Camundongo/fisiologia , Montagem de Vírus , Transporte Ativo do Núcleo Celular/genética , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular Transformada , Núcleo Celular/genética , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Vírus Miúdo do Camundongo/genética , Vírus Miúdo do Camundongo/crescimento & desenvolvimento , Mutagênese Sítio-Dirigida , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Montagem de Vírus/genética
10.
Proc Natl Acad Sci U S A ; 101(9): 2724-9, 2004 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-14981262

RESUMO

Twenty-eight amino acid residues involved in most noncovalent interactions between trimeric protein subunits in the capsid of the parvovirus minute virus of mice were truncated individually to alanine, and the effects on capsid assembly, thermostability, and conformation were analyzed. Only seven side chains were essential for protein subunit recognition. These side chains virtually corresponded with those that either buried a large hydrophobic surface on trimer association or formed buried intertrimer hydrogen bonds or salt bridges. The seven residues are evolutionarily conserved, and they define regularly spaced spots on a thin equatorial belt surrounding each trimer. Truncation of the many side chains that were dispensable for assembly, including those participating in solvent-accessible polar interactions, did not substantially affect capsid thermostability either. However, the interfacial residues located at the base of the pores delineating the capsid five-fold axes participated in a heat-induced conformational rearrangement associated with externalization of the capsid protein N terminus, and they were needed for infectivity. Thus, at the subunit interfaces of this model virus capsid, only key residues involved in the strongest interactions are critical for assembly and stability, but additional residues fulfill other important biological roles.


Assuntos
Aminoácidos/química , Proteínas do Capsídeo/química , Vírus Miúdo do Camundongo/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Camundongos , Vírus Miúdo do Camundongo/patogenicidade , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...