Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 9(1): 30, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791403

RESUMO

BACKGROUND: The mammalian target of rapamycin complex 2 (mTORC2), containing the essential protein rictor, regulates cellular metabolism and cytoskeletal organization by phosphorylating protein kinases, such as PKB/Akt, PKC, and SGK. Inactivation of mTORC2 signaling in adult skeletal muscle affects its metabolism, but not muscle morphology and function. However, the role of mTORC2 in adult muscle stem cells (MuSCs) has not been investigated. METHOD: Using histological, biochemical, and molecular biological methods, we characterized the muscle phenotype of mice depleted for rictor in the Myf5-lineage (RImyfKO) and of mice depleted for rictor in skeletal muscle fibers (RImKO). The proliferative and myogenic potential of MuSCs was analyzed upon cardiotoxin-induced injury in vivo and in isolated myofibers in vitro. RESULTS: Skeletal muscle of young and 14-month-old RImyfKO mice appeared normal in composition and function. MuSCs from young RImyfKO mice exhibited a similar capacity to proliferate, differentiate, and fuse as controls. In contrast, the number of MuSCs was lower in young RImyfKO mice than in controls after two consecutive rounds of cardiotoxin-induced muscle regeneration. Similarly, the number of MuSCs in RImyfKO mice decreased with age, which correlated with a decline in the regenerative capacity of mutant muscle. Interestingly, reduction in the number of MuSCs was also observed in 14-month-old RImKO muscle. CONCLUSIONS: Our study shows that mTORC2 signaling is dispensable for myofiber formation, but contributes to the homeostasis of MuSCs. Loss of mTORC2 does not affect their myogenic function, but impairs the replenishment of MuSCs after repeated injuries and their maintenance during aging. These results point to an important role of mTORC2 signaling in MuSC for muscle homeostasis.


Assuntos
Autorrenovação Celular , Mioblastos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/citologia , Mioblastos/fisiologia , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Transdução de Sinais
2.
Nat Commun ; 10(1): 3187, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320633

RESUMO

Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions.


Assuntos
Autofagia/fisiologia , Histona Desacetilases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Denervação Muscular , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Placa Motora/patologia , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética
3.
Development ; 146(7)2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872276

RESUMO

The formation of multi-nucleated muscle fibers from progenitors requires the fine-tuned and coordinated regulation of proliferation, differentiation and fusion, both during development and after injury in the adult. Although some of the key factors that are involved in the different steps are well known, how intracellular signals are coordinated and integrated is largely unknown. Here, we investigated the role of the cell-growth regulator mTOR by eliminating essential components of the mTOR complexes 1 (mTORC1) and 2 (mTORC2) in mouse muscle progenitors. We show that inactivation of mTORC1, but not mTORC2, in developing muscle causes perinatal death. In the adult, mTORC1 deficiency in muscle stem cells greatly impinges on injury-induced muscle regeneration. These phenotypes are because of defects in the proliferation and fusion capacity of the targeted muscle progenitors. However, mTORC1-deficient muscle progenitors partially retain their myogenic function. Hence, our results show that mTORC1 and not mTORC2 is an important regulator of embryonic and adult myogenesis, and they point to alternative pathways that partially compensate for the loss of mTORC1.This article has an associated 'The people behind the papers' interview.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Immunoblotting , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR/genética
4.
Cell Res ; 27(5): 604-605, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28290465

RESUMO

Long non-coding RNAs (lncRNAs) belong to the ever-increasing number of transcripts that are thought not to encode proteins. A recent study has now identified a small polypeptide encoded by the lncRNA LINC00961 that inhibits amino acid-induced mTORC1 activation in skeletal muscle.


Assuntos
RNA Longo não Codificante , Citoplasma , Alvo Mecanístico do Complexo 1 de Rapamicina , Peptídeos , Regeneração
5.
J Clin Invest ; 127(2): 549-563, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28067669

RESUMO

Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Complexos Multiproteicos/antagonistas & inibidores , Fibras Musculares Esqueléticas/enzimologia , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/enzimologia , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Adulto , Aminoimidazol Carboxamida/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/genética , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Transdução de Sinais/genética , Sirolimo/farmacocinética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Cell Metab ; 17(5): 731-44, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23602450

RESUMO

Autophagy is a catabolic process that ensures homeostatic cell clearance and is deregulated in a growing number of myopathological conditions. Although FoxO3 was shown to promote the expression of autophagy-related genes in skeletal muscle, the mechanisms triggering autophagy are unclear. We show that TSC1-deficient mice (TSCmKO), characterized by sustained activation of mTORC1, develop a late-onset myopathy related to impaired autophagy. In young TSCmKO mice, constitutive and starvation-induced autophagy is blocked at the induction steps via mTORC1-mediated inhibition of Ulk1, despite FoxO3 activation. Rapamycin is sufficient to restore autophagy in TSCmKO mice and improves the muscle phenotype of old mutant mice. Inversely, abrogation of mTORC1 signaling by depletion of raptor induces autophagy regardless of FoxO inhibition. Thus, mTORC1 is the dominant regulator of autophagy induction in skeletal muscle and ensures a tight coordination of metabolic pathways. These findings may open interesting avenues for therapeutic strategies directed toward autophagy-related muscle diseases.


Assuntos
Autofagia/fisiologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Doenças Musculares/metabolismo , Inanição/fisiopatologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...